An analysis of three pricing strategies for digital music products

Author(s):  
Jingxian Chen ◽  
Liang Liang ◽  
Samar Mukhopadhyay ◽  
Dong-qing Yao
2018 ◽  
Vol 2018 ◽  
pp. 693-695
Author(s):  
Eun-Ju Lee ◽  
◽  
Kyeong Cheon Cha ◽  
Minah Suh

2020 ◽  
Vol 10 (5) ◽  
pp. 1557
Author(s):  
Weijia Feng ◽  
Xiaohui Li

Ultra-dense and highly heterogeneous network (HetNet) deployments make the allocation of limited wireless resources among ubiquitous Internet of Things (IoT) devices an unprecedented challenge in 5G and beyond (B5G) networks. The interactions among mobile users and HetNets remain to be analyzed, where mobile users choose optimal networks to access and the HetNets adopt proper methods for allocating their own network resource. Existing works always need complete information among mobile users and HetNets. However, it is not practical in a realistic situation where important individual information is protected and will not be public to others. This paper proposes a distributed pricing and resource allocation scheme based on a Stackelberg game with incomplete information. The proposed model proves to be more practical by solving the problem that important information of either mobile users or HetNets is difficult to acquire during the resource allocation process. Considering the unknowability of channel gain information, the follower game among users is modeled as an incomplete information game, and channel gain is regarded as the type of each player. Given the pricing strategies of networks, users will adjust their bandwidth requesting strategies to maximize their expected utility. While based on the sub-equilibrium obtained in the follower game, networks will correspondingly update their pricing strategies to be optimal. The existence and uniqueness of Bayesian Nash equilibrium is proved. A probabilistic prediction method realizes the feasibility of the incomplete information game, and a reverse deduction method is utilized to obtain the game equilibrium. Simulation results show the superior performance of the proposed method.


Algorithms ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 186
Author(s):  
Tao Li ◽  
Yan Chen ◽  
Taoying Li

The problem of pricing distribution services is challenging due to the loss in value of product during its distribution process. Four logistics service pricing strategies are constructed in this study, including fixed pricing model, fixed pricing model with time constraints, dynamic pricing model, and dynamic pricing model with time constraints in combination with factors, such as the distribution time, customer satisfaction, optimal pricing, etc. By analyzing the relationship between optimal pricing and key parameters (such as the value of the decay index, the satisfaction of consumers, dispatch time, and the storage cost of the commodity), it is found that the larger the value of the attenuation coefficient, the easier the perishable goods become spoilage, which leads to lower distribution prices and impacts consumer satisfaction. Moreover, the analysis of the average profit of the logistics service providers in these four pricing models shows that the average profit in the dynamic pricing model with time constraints is better. Finally, a numerical experiment is given to support the findings.


Sign in / Sign up

Export Citation Format

Share Document