Concentrations of persistent organic pollutants and organic matter characteristics as river sediment quality indices

Author(s):  
Eleni Sazakli ◽  
George Siavalas ◽  
Athina Fidaki ◽  
Kimon Christanis ◽  
Hrissi K. Karapanagioti ◽  
...  
2020 ◽  
Author(s):  
Gisela Horlitz ◽  
Stefano Bonaglia ◽  
Igor Eulaers ◽  
Ronnie N. Glud ◽  
Anna Sobek

<p>The biogeochemistry of deep-sea trenches is strongly influenced by their V-shape topography and tectonic position in the ocean, leading to a focusing effect of sediment and organic matter into the trench centre. Recent findings showed elevated mineralization rates in trench sediments, suggesting both high carbon turnover and organic matter degradation rates. As persistent organic pollutants (POPs) favourably partition to organic matter, deep-sea trenches act as a sink for these substances. Composition, source and age of the organic matter have been shown to have a significant influence on contaminant dynamics in sediment from more shallow regions. Also, the trophic status of marine systems plays a significant role in transport of POPs from air to water and to sediment. However, knowledge about organic pollutants in deep-sea environments is scarce. In the present study, sediment samples from two deep-sea trenches with different trophic states and deposition regimes are analysed for POPs with a wide range of physicochemical properties. Concentrations will be compared between the semi-eutrophic Atacama and the oligotrophic Kermadec Trench. Sampling of sediment cores was performed at the slope, abyssal plain and trench at Atacama (depth between 2,500 and 8,000m) and at the abyssal plain and trench at Kermadec (depth of 6,000 and 9,600m). The total organic carbon content largely varied between 0.3 and 2.1% at different sites at the Atacama Trench, while values were more homogeneous at the Kermadec Trench (around 0.3%). Preliminary results from the Atacama samples demonstrate concentrations of PCBs at the pg g<sup>-1</sup> dw level, and indicate highest concentrations to occur at the highest depth in the trench. Low sedimentation- and high mineralization rates in the trench centre, as well as the funnel-effect from the topology may explain these differences.</p>


Author(s):  
Christopher H. Vane ◽  
Raquel A. Lopes dos Santos ◽  
Alexander W. Kim ◽  
Vicky Moss-Hayes ◽  
Fiona M. Fordyce ◽  
...  

ABSTRACTSurface sediments from a 160-km stretch of the River Clyde, Scotland, were analysed for persistent organic pollutants to investigate distribution, source and environmental effect. Glasgow's urban tributaries polyaromatic hydrocarbons (PAH) ranged from 2.3 to 4226mgkg–1, total petroleum hydrocarbons (TPH) 72 to 37879mgkg–1 and polychlorinated biphenyls (PCB) 3 to 809μgkg–1, which were more polluted than the upper River Clyde PAH that ranged from 0.1 to 42mgkg–1, TPH 3 to 260mgkg–1 and PCB 2 to 147μgkg–1. Intermediate values of the inner Clyde estuary PAH ranging from 0.6 to 30mgkg–1, and PCB ranging from 5 to 130μgkg–1, were attributed to point sources and sediment transfer from the urban tributaries. Comparison with sediment quality criteria suggested possible adverse effects on aquatic biota. PAH isomeric ratios confirmed a pyrolytic source throughout the Clyde and benzo[a]pyrene/benzo[g,h,i]perylene ratios >0.6 confirmed that upper, urban and estuarine domains all to a lesser or greater extent accumulated PAH from traffic emissions. The degree of chlorination determined from PCB homologues differed in each of the three domains, suggesting variable source or that the process aerobic/anaerobic degradation varied in each of the three domains. The anthropogenic impact of the city of Glasgow can be quantified in that the urban tributary sediment mean values were 60 (PAH), 33 (TPH) and 11 (PCB) times higher than the rural upper Clyde counterpart.


2008 ◽  
Vol 156 (3) ◽  
pp. 809-817 ◽  
Author(s):  
Jae Jak Nam ◽  
Orjan Gustafsson ◽  
Perihan Kurt-Karakus ◽  
Knut Breivik ◽  
Eiliv Steinnes ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tee L. Guidotti

On 16 October 1996, a malfunction at the Swan Hills Special Waste Treatment Center (SHSWTC) in Alberta, Canada, released an undetermined quantity of persistent organic pollutants (POPs) into the atmosphere, including polychlorinated biphenyls, dioxins, and furans. The circumstances of exposure are detailed in Part 1, Background and Policy Issues. An ecologically based, staged health risk assessment was conducted in two parts with two levels of government as sponsors. The first, called the Swan Hills Study, is described in Part 2. A subsequent evaluation, described here in Part 3, was undertaken by Health Canada and focused exclusively on Aboriginal residents in three communities living near the lake, downwind, and downstream of the SHSWTC of the area. It was designed to isolate effects on members living a more traditional Aboriginal lifestyle. Aboriginal communities place great cultural emphasis on access to traditional lands and derive both cultural and health benefits from “country foods” such as venison (deer meat) and local fish. The suspicion of contamination of traditional lands and the food supply made risk management exceptionally difficult in this situation. The conclusion of both the Swan Hills and Lesser Slave Lake studies was that although POPs had entered the ecosystem, no effect could be demonstrated on human exposure or health outcome attributable to the incident. However, the value of this case study is in the detail of the process, not the ultimate dimensions of risk. The findings of the Lesser Slave Lake Study have not been published previously and are incomplete.


Sign in / Sign up

Export Citation Format

Share Document