Solitary waves in shallow water magnetohydrodynamics

2017 ◽  
Vol 111 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Steven D. London
1985 ◽  
Vol 150 ◽  
pp. 311-327 ◽  
Author(s):  
A. S. Berman ◽  
T. S. Lundgren ◽  
A. Cheng

Experimental and analytical results are presented for the self-excited oscillations that occur in a partially filled centrifuge when centrifugal forces interact with shallow-water waves. Periodic and aperiodic modulations of the basic whirl phenomena are both observed and calculated. The surface waves are found to be hydraulic jumps, undular bores or solitary waves.


2021 ◽  
Author(s):  
Dimitrios Mitsotakis ◽  
Hendrik Ranocha ◽  
David I Ketcheson ◽  
Endre Süli

The paper proposes a new, conservative fully-discrete scheme for the numerical solution of the regularised shallow water Boussinesq system of equations in the cases of periodic and reflective boundary conditions. The particular system is one of a class of equations derived recently and can be used in practical simulations to describe the propagation of weakly nonlinear and weakly dispersive long water waves, such as tsunamis. Studies of small-amplitude long waves usually require long-time simulations in order to investigate scenarios such as the overtaking collision of two solitary waves or the propagation of transoceanic tsunamis. For long-time simulations of non-dissipative waves such as solitary waves, the preservation of the total energy by the numerical method can be crucial in the quality of the approximation. The new conservative fully-discrete method consists of a Galerkin finite element method for spatial semidiscretisation and an explicit relaxation Runge--Kutta scheme for integration in time. The Galerkin method is expressed and implemented in the framework of mixed finite element methods. The paper provides an extended experimental study of the accuracy and convergence properties of the new numerical method. The experiments reveal a new convergence pattern compared to standard Galerkin methods.


2005 ◽  
Vol 110 (F4) ◽  
pp. n/a-n/a ◽  
Author(s):  
François Marin ◽  
Nizar Abcha ◽  
Jérôme Brossard ◽  
Alexander B. Ezersky

Sign in / Sign up

Export Citation Format

Share Document