Traditional herbal compounds as candidates to inhibit the SARS-CoV-2 main protease: an in silico study

Author(s):  
Osmair Vital de Oliveira ◽  
Maria Cristina Andreazza Costa ◽  
Ricardo Marques da Costa ◽  
Rafael Giordano Viegas ◽  
Andrew S. Paluch ◽  
...  
Author(s):  
Acharya Balkrishna ◽  
Pallavi Thakur ◽  
Shivam Singh ◽  
Swami Dev ◽  
Viney Jain ◽  
...  

A novel respiratory pathogen, SARS-CoV-2 has recently received worldwide attention and has been declared a public health emergency of global concern. Entry of SARS-CoV-2 is mediated through the viral spike glycoprotein (S2). Afterwards, the virus gets hold of the host cell machinery by employing the use of viral main protease 3CLpro and NSP15 endoribonuclease. In the present in silico study, active site mapping of the viral virulence factors was rendered by means of DoG Site Scorer. The possibility of repurposing of 2-deoxy-D-glucose (2-DG), a radio-chemo-modifier drug used for optimizing cancer therapy, and one of its derivative (1, 3, 4, 6-Tetra-O-acetyl-2-deoxy-D-glucopyranose, has been investigated by conducting ligand-receptor docking. Binding pose depictions of ligands and viral receptors were assessed by employing molecular dynamics analysis. Molinspiration and Toxicity Estimation Software tools were used to assess the drug likeliness, bioactivity indices and ADMETox values. 2-DG can dock efficiently with viral main protease 3CLpro as well as NSP15 endoribonuclease, thus efficiently inactivating these viral receptors leading to incapacitation of the SARS-CoV-2 virus. Such incapacitation was possible by means of formation of a hydrogen bond between 2-DG and proline residues of viral protease. The 2-DG derivative formed a hydrogen bond with the glutamine amino acid residues of the viral spike glycoprotein. The present in silico study supports the potential benefits of using 2-DG and its glucopyranose derivative as repurposed drugs/prodrugs for mitigating the novel COVID-19 infection. Since both these moieties present no signs of serious toxicity, further empirical studies on model systems and human clinical trials to ascertain effective dose-response are warranted and should be urgently initiated.


2021 ◽  
Vol 6 (2) ◽  
pp. 20
Author(s):  
Rajkumar Sanjay ◽  
Vishal Shivalingappa ◽  
Nayeem A. ◽  
Shailendra Sanjay

Author(s):  
Prateek Kumar ◽  
Taniya Bhardwaj ◽  
Ankur Kumar ◽  
Bhuvaneshwari R. Gehi ◽  
Shivani K. Kapuganti ◽  
...  

2020 ◽  
Author(s):  
Amit Kumar Srivastav ◽  
Sanjeev Kumar Gupta ◽  
Umesh Kumar

In the present study, we have performed the in-silico study of SARS-CoV-2 structure with different herbal compounds of medicinal importance. We selected four <a>viral key proteins of SARS-CoV-2 </a>structure i.e ACE-2 Receptor, Main Protease (Mpro), APO Form, Cryo- electron microscopy structure for the Molecular docking followed by the molecular dynamic simulation. Using this simple in silico approach based on the molecular docking and <a>MD simulation </a>of protein and phytochemicals, we have identified potential lead candidates for the development of low cost nutraceuticals, which can be used against SARS-CoV-2 virus. Our analysis suggested that phytochemicals obtained from <i>Phyllanthus emblica</i> and <i>Azadirachta indica</i> have the highest potential to bind with ACE2 receptor or main protease of SARS-CoV-2, inhibiting the protease enzymatic activity. The lead compounds of herbal origin were docked and simulated on viral key proteins of SARS-CoV-2 structure to evaluate the binding affinity of these phytochemicals along with the type of interaction and its stability in terms of <a>RMSD</a> and <a>Ramachandran plot</a>. Further, these results were also verified by drug likeness properties by using SwissADME software. Overall, our results suggest that out of 14 herbal compounds, Nimbolide and Withaferin-A has great potential to be developed as low-cost nutraceuticals against SARS-CoV-2 virus, which is the need of hour.


2021 ◽  
Author(s):  
Amaresh Mishra ◽  
Yamini Pathak ◽  
Gourav Choudhir ◽  
Anuj Kumar ◽  
Surabhi Kirti Mishra ◽  
...  

2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095395
Author(s):  
Ateeq Ahmed Al-Zahrani

The process of investigating a possible cure for coronavirus disease 2019 (COVID-19) in vitro and in vivo may take a long time. For this reason, several in silico studies were performed in order to produce preliminary results that could lead to treatment. Extract of Juniperus procera Hochst is used as a traditional medicine for recovery from flu in Saudi Arabia. In the present study, more than 51 phytochemicals of J. procera were docked against the main protease of COVID-19. Rutin gave the highest interaction score among all the phytochemicals and the commercially available antiviral drugs. Lopinavir showed the second highest binding score. Rutin and lopinavir were further investigated using homology models of COVID-19. Rutin showed a better inhibition score in 9 of the 11 of homology models compared with lopinavir. Analysis of ligand-protein interaction contacts revealed that 3 residues (Glu166, Gly143, and Thr45) of the main protease formed hydrogen bonds with rutin. This simulation study suggests that rutin could be a possible effective inhibitor of several COVID-19 protein targets, including the main protease. Rutin, already available for commercial use, was evaluated for its ability as a possible drug. To our knowledge, this is the first study that suggests rutin having a possible strong inhibitory role against several protein targets of COVID-19.


2021 ◽  
pp. 100083
Author(s):  
Nitish Kumar ◽  
Atamjit Singh ◽  
Harmandeep Kaur Gulati ◽  
Kavita Bhagat ◽  
Komalpreet Kaur ◽  
...  

2020 ◽  
Author(s):  
arun kumar ◽  
Sharanya C.S ◽  
Abhithaj J ◽  
Sadasivan C

<p>The total cases of novel corona virus (SARS-CoV-2) infections is more than one million and total deaths recorded is more than fifty thousand. The research for developing vaccines and drugs against SARS-CoV-2 is going on in different parts of the world. Aim of the present study was to identify potential drug candidates against SARS-CoV-2 from existing drugs using <i>in silico</i> molecular modeling and docking. The targets for the present study was the spike protein and the main protease of SARS-CoV-2. The study was able to identify some drugs that can either bind to the spike protein receptor binding domain or the main protease of SARS-CoV-2. These include some of the antiviral drugs. These drugs might have the potential to inhibit the infection and viral replication.</p>


Sign in / Sign up

Export Citation Format

Share Document