Visual Discrimination in the Cat: VI. The Relation Between Pattern Vision and Visual Acuity and the Optic Projection Centers of the Nervous System

1938 ◽  
Vol 53 (2) ◽  
pp. 251-272
Author(s):  
Karl U. Smith
2015 ◽  
Vol 11 (11) ◽  
pp. 20150701 ◽  
Author(s):  
Masaki Tomonaga ◽  
Kiyonori Kumazaki ◽  
Florine Camus ◽  
Sophie Nicod ◽  
Carlos Pereira ◽  
...  

Mammals have adapted to a variety of natural environments from underwater to aerial and these different adaptations have affected their specific perceptive and cognitive abilities. This study used a computer-controlled touchscreen system to examine the visual discrimination abilities of horses, particularly regarding size and shape, and compared the results with those from chimpanzee, human and dolphin studies. Horses were able to discriminate a difference of 14% in circle size but showed worse discrimination thresholds than chimpanzees and humans; these differences cannot be explained by visual acuity. Furthermore, the present findings indicate that all species use length cues rather than area cues to discriminate size. In terms of shape discrimination, horses exhibited perceptual similarities among shapes with curvatures, vertical/horizontal lines and diagonal lines, and the relative contributions of each feature to perceptual similarity in horses differed from those for chimpanzees, humans and dolphins. Horses pay more attention to local components than to global shapes.


1936 ◽  
Vol 19 (3) ◽  
pp. 503-522 ◽  
Author(s):  
W. J. Crozier

From the data of experiments with bees in which threshold response is employed as a means of recognizing visual discrimination between stripes of equal width alternately illuminated by intensities I1 and I2, it is shown that the detectable increment of intensity ΔI, where ΔI = I2 - I1, is directly proportional to σI2 (I1 being fixed). From tests of visual acuity, where I1 = 0 and the width of the stripes is varied, σI2 = kI2 + const.; here I2 = ΔI, and ΔI/I2 = 1. When the visual excitability of the bee is changed by dark adaptation, λI ≡ kΔI (= k' σΔI) = k'' I + const. For the measurements of critical illumination at threshold response to flicker, σI2 (= σΔI) = k I2 = k' ΔI + const. The data for critical illumination producing threshold response to flicker in the sun-fish Lepomis show for the rods σI2 = K I2 for the cones σI2 = K'(I2 + const.). The data thus indicate that in all these experiments essentially the same visual function is being examined, and that the recognition of the production of a difference in effect by alternately illuminated stripes takes place in such a way that d (ΔI)/d (σI2) = const., and that ΔI is directly proportional to I (or "I2," depending on the nature of the experiment). It is pointed out that the curve for each of the cases considered can be gotten equally well if mean I or σI is plotted as a function of the independent variable involved in the experiment. Certain consequences of these and related facts are important for the treatment of the general problem of intensity discrimination.


2022 ◽  
Vol 5 (1) ◽  
pp. 178-189
Author(s):  
Liliyanti Fauzi ◽  
Tiara Bunga

The eye is a complex sensory organ that is responsible for vision. Within the protective sheath, each eye has receptors, a lens system for focusing light on receptors, and a nervous system for transmitting impulses from the receptors to the brain. Visual dysfunction can be caused by abnormal eye movements or changes in visual acuity, refraction, color vision, or accommodation. Visual dysfunction may also be a secondary effect of other neurological disorders. This narrative review aims to describe the structure of the eye in general and visual disturbances caused by the aging process and disorders of the protective structure of the eye.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 225-233 ◽  
Author(s):  
Uwe Hahmann ◽  
Onur Güntürkün

AbstractThe effects of bilateral lesions of the centrifugal visual system (CVS) on the visual-discrimination capacity were studied in pigeons. Three different behavioral experiments, each testing different aspects of visual analysis, were performed. In the first two experiments, a grain-grit discrimination task and a visual-acuity determination, stimuli were presented in the frontal binocular visual field. A third experiment investigated the early detection of slow moving objects, introduced into the monocular lateral visual field. After bilateral lesions in the nucleus isthmo-opticus (ION) and in the ectopic nucleus isthmo-opticus (EION), a multiple linear regression analysis was employed to correlate the postoperative performance in all three tasks with the amount of structure loss within ION and EION. Deficits in the grain-grit discrimination procedure were a function of the ION lesion extent and did not depend on EION damage. Thus, these two structures could be functionally differentiated for the first time. Neither the ION nor the EION seems to be involved in visual- acuity performance or the early detection of large shadows moving forward through the visual field. Our data support the hypothesis that the CVS is involved in pecking and food selection among static stimuli at a short viewing distance in ground-feeding birds such as pigeons and chickens.


2019 ◽  
Vol 42 ◽  
Author(s):  
Kevin B. Clark

Abstract Some neurotropic enteroviruses hijack Trojan horse/raft commensal gut bacteria to render devastating biomimicking cryptic attacks on human/animal hosts. Such virus-microbe interactions manipulate hosts’ gut-brain axes with accompanying infection-cycle-optimizing central nervous system (CNS) disturbances, including severe neurodevelopmental, neuromotor, and neuropsychiatric conditions. Co-opted bacteria thus indirectly influence host health, development, behavior, and mind as possible “fair-weather-friend” symbionts, switching from commensal to context-dependent pathogen-like strategies benefiting gut-bacteria fitness.


Sign in / Sign up

Export Citation Format

Share Document