scholarly journals Determination of chemical species in fly ash collected at different sources

1994 ◽  
Vol 6 (4) ◽  
pp. 113-118
Author(s):  
Ildikó Bódog ◽  
Klára Polyák ◽  
József Hlavay
Talanta ◽  
1994 ◽  
Vol 41 (7) ◽  
pp. 1151-1159 ◽  
Author(s):  
Klára Polyák ◽  
Ildikó Bódog ◽  
József Hlavay

Author(s):  
John Ross ◽  
Igor Schreiber ◽  
Marcel O. Vlad

In a chemical system with many chemical species several questions can be asked: what species react with other species: in what temporal order: and with what results? These questions have been asked for over one hundred years about simple and complex chemical systems, and the answers constitute the macroscopic reaction mechanism. In Determination of Complex Reaction Mechanisms authors John Ross, Igor Schreiber, and Marcel Vlad present several systematic approaches for obtaining information on the causal connectivity of chemical species, on correlations of chemical species, on the reaction pathway, and on the reaction mechanism. Basic pulse theory is demonstrated and tested in an experiment on glycolysis. In a second approach, measurements on time series of concentrations are used to construct correlation functions and a theory is developed which shows that from these functions information may be inferred on the reaction pathway, the reaction mechanism, and the centers of control in that mechanism. A third approach is based on application of genetic algorithm methods to the study of the evolutionary development of a reaction mechanism, to the attainment given goals in a mechanism, and to the determination of a reaction mechanism and rate coefficients by comparison with experiment. Responses of non-linear systems to pulses or other perturbations are analyzed, and mechanisms of oscillatory reactions are presented in detail. The concluding chapters give an introduction to bioinformatics and statistical methods for determining reaction mechanisms.


2008 ◽  
Vol 35 (4) ◽  
pp. 349-357 ◽  
Author(s):  
İlker Bekir Topçu ◽  
Mehmet Uğur Toprak ◽  
Devrim Akdağ

Microwave energy can accelerate the hydration of cement, which results in the rapid strength development of concrete. In this paper, prediction of later age compressive strength of fly ash cement mortars, based on the accelerated strength of mortars cured with microwave energy, was investigated. To accelerate curing properly, optimal processing parameters of microwave curing (MC) on Portland cement mortars (CM) and fly ash cement mortars (FA) were first determined and then were applied to mortars. The possible early ages for the strength prediction were found to be at 6 and 8 h for CM and FA, respectively. The error percentages for prediction of CM were ±2.22% and 2.91% for 7 and 28 d, respectively. Error percentages for FA, on the other hand, were ±4.36% and 5.20% for 7 and 28 d, respectively.


1981 ◽  
Vol 103 (2) ◽  
pp. 265-270 ◽  
Author(s):  
R. Kotwal ◽  
W. Tabakoff

With increasing interest in the burning of coal in industrial gas turbines, there is also concern for the precise determination of the erosive effects on the turbine components. Series of experiments were conducted to determine the effects of fly ash constituents, particle size, particle velocity, angle of attack and target temperature on the erosion of iron and nickel base alloys. Based on the experimental results, a semi-empirical equation has been obtained for the prediction of the erosion losses. This equation provides a new technique for predicting the metal erosion due to the fly ash produced by the conventional burning of coal.


Sign in / Sign up

Export Citation Format

Share Document