scholarly journals Are college campuses superspreaders? A data-driven modeling study

Author(s):  
Hannah Lu ◽  
Cortney Weintz ◽  
Joseph Pace ◽  
Dhiraj Indana ◽  
Kevin Linka ◽  
...  
2020 ◽  
Vol 34 (9) ◽  
Author(s):  
Jessica Y. Luo ◽  
Robert H. Condon ◽  
Charles A. Stock ◽  
Carlos M. Duarte ◽  
Cathy H. Lucas ◽  
...  

2021 ◽  
Vol 31 (10) ◽  
pp. 101104
Author(s):  
Hanchu Zhou ◽  
Qingpeng Zhang ◽  
Zhidong Cao ◽  
Helai Huang ◽  
Daniel Dajun Zeng

2020 ◽  
Author(s):  
Hannah Lu ◽  
Cortney Weintz ◽  
Joseph Pace ◽  
Dhiraj Indana ◽  
Kevin Linka ◽  
...  

ABSTRACTThe COVID-19 pandemic continues to present enormous challenges for colleges and universities and strategies for save reopening remain a topic of ongoing debate. Many institutions that reopened cautiously in the fall experienced a massive wave of infections and colleges were soon declared as the new hotspots of the pandemic. However, the precise effects of college outbreaks on their immediate neighborhood remain largely unknown. Here we show that the first two weeks of instruction present a high-risk period for campus outbreaks and that these outbreaks tend to spread into the neighboring communities. By integrating a classical mathematical epidemiology model and Bayesian learning, we learned the dynamic reproduction number for 30 colleges from their daily case reports. Of these 30 institutions, 14 displayed a spike of infections within the first two weeks of class, with peak seven-day incidences well above 1,000 per 100,000, an order of magnitude larger than the nation-wide peaks of 70 and 150 during the first and second waves of the pandemic. While most colleges were able to rapidly reduce the number of new infections, many failed to control the spread of the virus beyond their own campus: Within only two weeks, 17 campus outbreaks translated directly into peaks of infection within their home counties. These findings suggests that college campuses are at risk to develop an extreme incidence of COVID-19 and become superspreaders for neighboring communities. We anticipate that tight test-trace-quarantine strategies, flexible transition to online instruction, and–most importantly–compliance with local regulations will be critical to ensure a safe campus reopening after the winter break.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 949
Author(s):  
Keita Hara ◽  
Masaki Inoue

In this paper, we address the data-driven modeling of a nonlinear dynamical system while incorporating a priori information. The nonlinear system is described using the Koopman operator, which is a linear operator defined on a lifted infinite-dimensional state-space. Assuming that the L2 gain of the system is known, the data-driven finite-dimensional approximation of the operator while preserving information about the gain, namely L2 gain-preserving data-driven modeling, is formulated. Then, its computationally efficient solution method is presented. An application of the modeling method to feedback controller design is also presented. Aiming for robust stabilization using data-driven control under a poor training dataset, we address the following two modeling problems: (1) Forward modeling: the data-driven modeling is applied to the operating data of a plant system to derive the plant model; (2) Backward modeling: L2 gain-preserving data-driven modeling is applied to the same data to derive an inverse model of the plant system. Then, a feedback controller composed of the plant and inverse models is created based on internal model control, and it robustly stabilizes the plant system. A design demonstration of the data-driven controller is provided using a numerical experiment.


Author(s):  
Shams Kalam ◽  
Rizwan Ahmed Khan ◽  
Shahnawaz Khan ◽  
Muhammad Faizan ◽  
Muhammad Amin ◽  
...  

Author(s):  
K. Midzodzi Pekpe ◽  
Djamel Zitouni ◽  
Gilles Gasso ◽  
Wajdi Dhifli ◽  
Benjamin C. Guinhouya

Sign in / Sign up

Export Citation Format

Share Document