Classification of Sediment Samples from Brittany Coast 14 Years after Tanio Oil Spill Based on GC/MS Analysis of PAHs and Principal Component Analysis

1996 ◽  
Vol 9 (1-4) ◽  
pp. 101-108 ◽  
Author(s):  
F. Jacquot ◽  
N. Pieri ◽  
P. Doumenq ◽  
M. Guiliano ◽  
D. Munoz ◽  
...  
Author(s):  
Hyeuk Kim

Unsupervised learning in machine learning divides data into several groups. The observations in the same group have similar characteristics and the observations in the different groups have the different characteristics. In the paper, we classify data by partitioning around medoids which have some advantages over the k-means clustering. We apply it to baseball players in Korea Baseball League. We also apply the principal component analysis to data and draw the graph using two components for axis. We interpret the meaning of the clustering graphically through the procedure. The combination of the partitioning around medoids and the principal component analysis can be used to any other data and the approach makes us to figure out the characteristics easily.


2021 ◽  
Author(s):  
Ananta Agarwalla ◽  
Diya Dileep ◽  
P. Jyothsana ◽  
Purnima Unnikrishnan ◽  
Karthik Thirumala

2019 ◽  
Vol 4 (2) ◽  
pp. 359-366
Author(s):  
Irfan Maibriadi ◽  
Ratna Ratna ◽  
Agus Arip Munawar

Abstrak,  Tujuan dari penelitian ini adalah mendeteksi kandungan dan kadar formalin pada buah tomat dengan menggunakan instrument berbasis teknologi Electronic nose. Penelitian ini menggunakan buah tomat yang telah direndam dengan formalin dengan kadar 0.5%, 1%, 2%, 3%, 4%, dan buah tomat tanpa perendaman dengan formalin (0%). Jumlah sampel yang digunakan pada penelitian ini adalah sebanyak 18 sampel. Pengukuran spektrum beras menggunakan sensor Piezoelectric Tranducer. Klasifikasi data spektrum buah tomat menggunakan metode Principal Component Analysis (PCA) dengan pretreatment nya adalah Gap Reduction. Hasil penelitian ini diperoleh yaitu: Hidung elektronik mulai merespon aroma formalin pada buah tomat pada detik ke-8.14, dan dapat mengklasifikasikan kandungan dan kadar formalin pada buah tomat pada detik ke 25.77. Hidung elektronik yang dikombinasikan dengan metode principal component analysis (PCA) telah berhasil mendeteksikandungan dan kadar formalin pada buah tomat dengan tingkat keberhasilan sebesar 99% (PC-1 sebesar 93% dan PC-2 sebesar 6%). Perbedaan kadar formalin menjadi faktor utama yang menyebabkan Elektronik nose mampu membedakan sampel buah tomat yang diuji, karena semakin tinggi kadar formalin pada buah tomat maka aroma khas dari buah tomat pun semakin menghilang, sehingga Electronic nose yang berbasis kemampuan penciuman dapat membedakannya.Detect Formaldehyde on Tomato (Lycopersicum esculentum Mill) With Electronic Nose TechnologyAbstract, The purpose of this study is to detect the contents and levels of formalin in tomatoes by using instruments based on Electronic nose technology. This study used tomatoes that have been soaked in formalin with a concentration of 0.5%, 1%, 2%, 3%, 4%, 5% and tomatoes without soaking with formalin (0%). The samples in this study were 18 samples. The measurements of the intensity on tomatoes aroma were using Piezoelectric Transducer sensors. The classification of tomato spectrum data was using the Principal Component Analysis (PCA) method with Gap Reduction pretreatment. The results of this study were obtained: the Electronic nose began to respond the smell of formalin on tomatoes at 8.14 seconds, and it could classify the content and formalin levels in tomatoes at 25.77 seconds. Electronic nose combined with the principal component analysis (PCA) method have successfully detected the content and levels of formalin in tomatoes with a success rate at 99% (PC-1 of 93% and PC-2 of 6%). The difference of grade formalin levels is the main factor that causes Electronic nose to be able to distinguish the tomato samples tested, because the higher of formalin content in tomatoes, the distinctive of tomatoes aroma is increasingly disappearing. Thereby, the Electronic nose based on  the olfactory ability can distinguish them. 


Sign in / Sign up

Export Citation Format

Share Document