INFLUENCE OF NUCLEOPHILIC REAGENTS ON THE REACTIONS OF PHOSPHORUS SULFIDES AND ALKYL HOMOLOGUES OF DAVY'S REAGENT WITH ALKYL HALIDES AND DIALKYL DISULFIDES

1998 ◽  
Vol 143 (1) ◽  
pp. 133-149 ◽  
Author(s):  
Il'yas S. Nizamov ◽  
Gul'nur G. Sergeenk ◽  
Alexey V. Matseevskii ◽  
Elvira S. Batyeva
2020 ◽  
Author(s):  
Julian West ◽  
Alexandros S Pollatos ◽  
Radha Bam
Keyword(s):  

2020 ◽  
Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Cassandra R. Youshaw ◽  
Mingbin Yuan ◽  
Michael B. Geherty ◽  
...  

The first iron-catalyzed three-component cross-coupling of unactivated olefins with alkyl halides and Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles, alkyl halides, and unactivated olefins bearing diverse functional groups to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.


Author(s):  
Lei Liu ◽  
Wes Lee ◽  
Mingbin Yuan ◽  
Chris Acha ◽  
Michael B. Geherty ◽  
...  

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of the alkyl radical intermediates out of the solvent cage to participate in an intra- or -intermolecular radical cascade with the VCP followed by re-entering the Fe radical cross-coupling cycle to undergo selective C(sp2)-C(sp3) bond formation. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.


2013 ◽  
Vol 13 (6) ◽  
pp. 802-813 ◽  
Author(s):  
Qun Qian ◽  
Zhenhua Zang ◽  
Yang Chen ◽  
Weiqi Tong ◽  
Hegui Gong

2019 ◽  
Vol 16 (4) ◽  
pp. 308-322
Author(s):  
Mohammad S.T. Makki ◽  
Reda M. Abdel-Rahman ◽  
Abdulrahman S. Alharbi

In recent years, a very interest in the synthesis of functionalized 3-thioxo-1,2,4-triazin-5- ones and their derivatives as vital probes has been increased, due to the important, applications of the medicinal, pharmacological, and biological field as a drug, semi drug, and bioactive systems. The present work review outlines extensive recent advances literature survey on the synthesis of sulfurbearing 1,2,4-triazin-5-one derivatives has been reconsidered. Also, the behavior of these family towards electrophilic and nucleophilic reagents in different media and conditions reported. The biological evaluation of the most synthesized systems included anticancer, anti-HIV, antimicrobial as well as their enzymatic effects (cellobiase produced by fungi) have been reported. The reactivity of these systems depends on the polarity of solvent, temperature, molarity as well as a type of tautomeric present.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3466-3472
Author(s):  
Yunkui Liu ◽  
Bingwei Zhou ◽  
Qiao Li ◽  
Hongwei Jin

We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.


Sign in / Sign up

Export Citation Format

Share Document