Review of the Toxicology of Mineral Spirits

2008 ◽  
Vol 27 (1) ◽  
pp. 97-165 ◽  
Author(s):  
Marie A. Amoruso ◽  
John F. Gamble ◽  
Richard H. McKee ◽  
Arlean M. Rohde ◽  
Andrew Jaques

This review of the toxicology of mineral spirits covers studies of the major classes of mineral spirits and several toxicologically important mineral spirit constituents. This review cites data from numerous previously unpublished animal toxicology studies conducted on mineral spirits during the past 30 years, expanding the existing database on the toxicology of this group of hydrocarbon solvents. The data can be used to better evaluate the potential effects associated with exposure to these materials, including health and environmental reviews such as the U.S. Environmental Protection Agency High Production Volume (HPV) chemical program and the Organization for Economic Cooperation and Development (OECD) HPV Screening Information Data Set (SIDS) program. The majority of animal toxicology studies in the available literature were conducted on mineral spirits categorized as ASTM D235 Type I Class A (149°C to 213°C boiling range; 8% to 22% aromatics) and demonstrate that Type I Class A mineral spirits have a low order of acute toxicity and do not produce significant systemic effects. Some additional studies conducted with ASTM D235 Type II Class C mineral spirits (177°C to 213°C boiling range; <2% aromatics) suggest that Type II Class C mineral spirits have similar toxicity to Type I Class A mineral spirits, though there is some evidence that Type II, Class C mineral spirits have a lesser degree of central nervous system (CNS) effects than the higher aromatic containing Type I Class A materials. In addition, toxicity data on selected chemical constituents of mineral spirits (e.g., n-nonane, n-decane, n-undecane) indicate that these chemicals have similar toxicological properties to mineral spirits. Overall, the data showed that mineral spirits have a low order of acute toxicity and do not appear to produce toxicologically relevant systemic effects. Ongoing studies are evaluating the concerns associated with chronic low-level exposure and central nervous system effects.

2010 ◽  
Vol 79 (3) ◽  
pp. 1363-1373 ◽  
Author(s):  
Jianchun Xiao ◽  
Lorraine Jones-Brando ◽  
C. Conover Talbot ◽  
Robert H. Yolken

ABSTRACTStrain type is one of the key factors suspected to play a role in determining the outcome ofToxoplasmainfection. In this study, we examined the transcriptional profile of human neuroepithelioma cells in response to representative strains ofToxoplasmaby using microarray analysis to characterize the strain-specific host cell response. The study of neural cells is of interest in light of the ability ofToxoplasmato infect the brain and to establish persistent infection within the central nervous system. We found that the extents of the expression changes varied considerably among the three strains. Neuroepithelial cells infected withToxoplasmatype I exhibited the highest level of differential gene expression, whereas type II-infected cells had a substantially smaller number of genes which were differentially expressed. Cells infected with type III exhibited intermediate effects on gene expression. The three strains also differed in the individual genes and gene pathways which were altered following cellular infection. For example, gene ontology (GO) analysis indicated that type I infection largely affects genes related to the central nervous system, while type III infection largely alters genes which affect nucleotide metabolism; type II infection does not alter the expression of a clearly defined set of genes. Moreover, Ingenuity Pathways Analysis (IPA) suggests that the three lineages differ in the ability to manipulate their host; e.g., they employ different strategies to avoid, deflect, or subvert host defense mechanisms. These observed differences may explain some of the variation in the neurobiological effects of different strains ofToxoplasmaon infected individuals.


2021 ◽  
Vol 14 ◽  
Author(s):  
Julie Polanco ◽  
Fredy Reyes-Vigil ◽  
Sarah D. Weisberg ◽  
Ilirian Dhimitruka ◽  
Juan L. Brusés

Type I and type II classical cadherins comprise a family of cell adhesion molecules that regulate cell sorting and tissue separation by forming specific homo and heterophilic bonds. Factors that affect cadherin-mediated cell-cell adhesion include cadherin binding affinity and expression level. This study examines the expression pattern of type I cadherins (Cdh1, Cdh2, Cdh3, and Cdh4), type II cadherins (Cdh6, Cdh7, Cdh8, Cdh9, Cdh10, Cdh11, Cdh12, Cdh18, Cdh20, and Cdh24), and the atypical cadherin 13 (Cdh13) during distinct morphogenetic events in the developing mouse central nervous system from embryonic day 11.5 to postnatal day 56. Cadherin mRNA expression levels obtained from in situ hybridization experiments carried out at the Allen Institute for Brain Science (https://alleninstitute.org/) were retrieved from the Allen Developing Mouse Brain Atlas. Cdh2 is the most abundantly expressed type I cadherin throughout development, while Cdh1, Cdh3, and Cdh4 are expressed at low levels. Type II cadherins show a dynamic pattern of expression that varies between neuroanatomical structures and developmental ages. Atypical Cdh13 expression pattern correlates with Cdh2 in abundancy and localization. Analyses of cadherin-mediated relative adhesion estimated from their expression level and binding affinity show substantial differences in adhesive properties between regions of the neural tube associated with the segmentation along the anterior–posterior axis. Differences in relative adhesion were also observed between brain nuclei in the developing subpallium (basal ganglia), suggesting that differential cell adhesion contributes to the segregation of neuronal pools. In the adult cerebral cortex, type II cadherins Cdh6, Cdh8, Cdh10, and Cdh12 are abundant in intermediate layers, while Cdh11 shows a gradated expression from the deeper layer 6 to the superficial layer 1, and Cdh9, Cdh18, and Cdh24 are more abundant in the deeper layers. Person’s correlation analyses of cadherins mRNA expression patterns between areas and layers of the cerebral cortex and the nuclei of the subpallium show significant correlations between certain cortical areas and the basal ganglia. The study shows that differential cadherin expression and cadherin-mediated adhesion are associated with a wide range of morphogenetic events in the developing central nervous system including the organization of neurons into layers, the segregation of neurons into nuclei, and the formation of neuronal circuits.


1999 ◽  
Vol 2 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Shawn Clark Emery ◽  
Nancy C. Karpinski ◽  
Lawrence Hansen ◽  
Eliezer Masliah

Osteogenesis imperfecta (OI) type II is a perinatally lethal condition resulting from mutations in type I collagen genes. In addition to characteristic skeletal anomalies, OI type II has recently been shown to be associated with neuropathological alterations, specifically perivenous microcalcifications, and impaired neuroblast migration. In light of these findings, and because type I collagen promotes neuritic maturation both in vitro and in vivo, we sought to determine if additional central nervous system (CNS) developmental anomalies could be found in previously autopsied OI type II cases, and if specific abnormalities correlate with OI subtypes. We retrospectively studied brains of nine patients diagnosed with OI. Of these, seven were OI type II: five were OI type IIA, one was type IIB, and one was type IIC. One OI type I specimen and one OI type III brain were included for comparison, as well as five controls. The IIC brain showed hippocampal malrotation, agyria, abnormal neuronal lamination, diffuse hemorrhage, and peri-ventricular leukomalacia (PVL). The IIB brain had white matter gliosis, PVL, and perivascular calcifications, but was normally developed. Of the five type IIA brains, two showed migrational defects with coexisting PVL and gliosis, two were normally developed with similar white matter injuries, and one was grossly normal. These findings support the contention that collagen mutations might negatively impact CNS development.


2017 ◽  
Vol 4 (1) ◽  
pp. 42
Author(s):  
Ira Safitri ◽  
Inayah Inayah

Sapu Jagad (Isotoma longiflora (L) Presl.) plant has been empirically used as traditional medicine. Some studies showthat this plant has pharmacological effects as antibiotic, anticancer, and analgetic. It is of importance to conduct studyin finding out the safetiness of this plant as herbal medicine. Therefore, we conducted study to find out lethal dose ofits leaves on mice (Mus muculus) using acute toxicity test. Several doses have been given to certain groups to find outits effect including death. The extract has been given one time per oral. Then, we recorded the clinical signs and deathof mice until 14 days. The data was analyzed using probit analysis to measure LD50. This study shows that ethanolextract of Sapu Jagad leaves has LD50 12.610 mg/kgBW and toxicity of central nervous system proven by seizureending with death. As conclusion, this extract has toxicity especially to central nervous system.


Author(s):  
Christian J. Hendriksz ◽  
Francois Karstens

There are 8 different types of diseases of the mucopolysaccharides, each caused by a deficiency in one of 10 different enzymes involved in the degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate within the lysosomes of many different cell types and lead to clinical symptoms and excretion of large amounts of GAGs in the urine. Heritability is autosomal recessive except for MPS type II, which is X-linked. The disorders are chronic and progressive and, although the specific types all have their individual features, they share an abundance of clinical similarities. All involve the musculoskeletal, the cardiovascular, the pulmonary and the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document