Foamy oil properties and horizontal well inflow performance relationship under solution gas drive

2018 ◽  
Vol 22 (3) ◽  
pp. 151-160 ◽  
Author(s):  
Congge He ◽  
Zifei Fan ◽  
Anzhu Xu ◽  
Lun Zhao
2014 ◽  
Vol 122 ◽  
pp. 280-289 ◽  
Author(s):  
K.A. Fattah ◽  
Mohamed Elias ◽  
H. Ahmed El-Banbi ◽  
El-Sayed A. El-Tayeb

2009 ◽  
Author(s):  
Mohamed Ali A. Elias ◽  
Ahmed Hamdi El-banbi ◽  
Khaled Ahmed ◽  
El-Sayed Ahmed Mohamed El-Tayeb

SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1236-1253 ◽  
Author(s):  
Tae Wook Kim ◽  
E.. Vittoratos ◽  
A. R. Kovscek

Summary Recovery processes with a voidage-replacement ratio (VRR) (VRR = injected volume/produced volume) of unity rely solely on viscous forces to displace oil, whereas a VRR of zero relies on solution-gas drive. Activating a solution-gas-drive mechanism in combination with waterflooding with periods of VRR less than unity (VRR < 1) may be optimal for recovery. Laboratory evidence suggests that recovery for VRR < 1 is enhanced by emulsion flow and foamy (i.e., bubbly) crude oil at pressures under bubblepoint for some crude oils. This paper investigates the effect of VRR for two crude oils referred to as A1 (88 cp and 6.2 wt% asphaltene) and A2 (600 cp and 2.5 wt% asphaltene) in a sandpack system (18-in. length and 2-in. diameter). The crude oils are characterized with viscosity, asphaltene fraction, and acid/base numbers. A high-pressure experimental sandpack system (1 darcy and Swi = 0) was used to conduct experiments with VRRs of 1.0, 0.7, and 0 for both oils. During waterflood experiments, we controlled and monitored the rate of fluid injection and production to obtain well-characterized VRR. On the basis of the production ratio of fluids, the gas/oil and /water relative permeabilities were estimated under two-phase-flow conditions. For a VRR of zero, the gas relative permeability of both oils exhibited extremely low values (10−6−10−4) caused by internal gas drive. Waterfloods with VRR < 1 displayed encouraging recovery results. In particular, the final oil recovery with VRR = 0.7 [66.2% original oil in place (OOIP)] is more than 15% greater than that with VRR = 1 (55.6% OOIP) with A1 crude oil. Recovery for A2 with VRR = 0.7 (60.5% OOIP) was identical to the sum of oil recovery for solution-gas drive (19.1% OOIP) plus waterflooding (40.1% OOIP). An in-line viewing cell permitted inspection of produced fluid morphology. For A1 and VRR = 0.7, produced oil was emulsified, and gas was dispersed as bubbles, as expected for a foamy oil. For A2 and VRR < 1, foamy oil was not clearly observed in the viewing cell. In all cases, the water cut of VRR = 1 is clearly greater than that of VRR = 0.7. Finally, three-phase relative permeability was explored on the basis of the experimentally determined two-phase oil/water and liquid/gas relative permeability curves. Well-known algorithms for three-phase relative permeability, however, did not result in good history matches to the experimental data. Numerical simulations matched the experimental recovery vs. production time acceptably after modification of the measured krg and krow relationships. A concave shape for oil relative permeability that is suggestive of emulsified oil in situ was noted for both systems. The degree of agreement with experimental data is sensitive to the details of gas (gas/oil system) and oil (oil/water system) mobility.


2007 ◽  
Author(s):  
Dilhan Ilk ◽  
Rodolfo Camacho Velazquez ◽  
Thomas Alwin Blasingame

Sign in / Sign up

Export Citation Format

Share Document