On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios

2007 ◽  
Vol 14 (7) ◽  
pp. 503-509 ◽  
Author(s):  
Yuan-Hung Hsu Ku ◽  
Ho-Chyuan Chen ◽  
Kuang-Hua Chen
2014 ◽  
Vol 30 (4) ◽  
pp. 1053
Author(s):  
Amine Lahiani ◽  
Khaled Guesmi

<p>This paper examines the price volatility and hedging behavior of commodity futures indices and stock market indices. We investigate the weekly hedging strategies generated by return-based and range-based asymmetric dynamic conditional correlation (DCC) processes. The hedging performances of short and long hedgers are estimated with a semi-variance, low partial moment and conditional value-at-risk. The empirical results show that range-based DCC model outperforms return-based DCC model for most cases.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Halit Cinarka ◽  
Mehmet Atilla Uysal ◽  
Atilla Cifter ◽  
Elif Yelda Niksarlioglu ◽  
Aslı Çarkoğlu

AbstractThis study aims to evaluate the monitoring and predictive value of web-based symptoms (fever, cough, dyspnea) searches for COVID-19 spread. Daily search interests from Turkey, Italy, Spain, France, and the United Kingdom were obtained from Google Trends (GT) between January 1, 2020, and August 31, 2020. In addition to conventional correlational models, we studied the time-varying correlation between GT search and new case reports; we used dynamic conditional correlation (DCC) and sliding windows correlation models. We found time-varying correlations between pulmonary symptoms on GT and new cases to be significant. The DCC model proved more powerful than the sliding windows correlation model. This model also provided better at time-varying correlations (r ≥ 0.90) during the first wave of the pandemic. We used a root means square error (RMSE) approach to attain symptom-specific shift days and showed that pulmonary symptom searches on GT should be shifted separately. Web-based search interest for pulmonary symptoms of COVID-19 is a reliable predictor of later reported cases for the first wave of the COVID-19 pandemic. Illness-specific symptom search interest on GT can be used to alert the healthcare system to prepare and allocate resources needed ahead of time.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Kai Chang

Under departures from the cost-of-carry theory, traded spot prices and conditional volatility disturbed from futures market have significant impacts on futures price of emissions allowances, and then we propose time-varying hedge ratios and hedging effectiveness estimation using ECM-GARCH model. Our empirical results show that conditional variance, conditional covariance, and their correlation between between spot and futures prices exhibit time-varying trends. Conditional volatility of spot prices, conditional volatility disturbed from futures market, and conditional correlation of market noises implied from spot and futures markets have significant effects on time-varying hedge ratios and hedging effectiveness. In the immature emissions allowances market, market participants optimize portfolio sizes between spot and futures assets using historical market information and then achieve higher risk reduction of assets portfolio revenues; accordingly, we can obtain better hedging effectiveness through time-varying hedge ratios with departures from the cost-of-carry theory.


Sign in / Sign up

Export Citation Format

Share Document