The crash injury severity prediction of traffic accident using an improved wrappers feature selection algorithm

Author(s):  
Shufeng Wang ◽  
Zhihao Li ◽  
Junyou Zhang ◽  
Yadong Yuan ◽  
Zhe Liu
Author(s):  
Wenjie Liu ◽  
Shanshan Wang ◽  
Xin Chen ◽  
He Jiang

In software maintenance process, it is a fairly important activity to predict the severity of bug reports. However, manually identifying the severity of bug reports is a tedious and time-consuming task. So developing automatic judgment methods for predicting the severity of bug reports has become an urgent demand. In general, a bug report contains a lot of descriptive natural language texts, thus resulting in a high-dimensional feature set which poses serious challenges to traditionally automatic methods. Therefore, we attempt to use automatic feature selection methods to improve the performance of the severity prediction of bug reports. In this paper, we introduce a ranking-based strategy to improve existing feature selection algorithms and propose an ensemble feature selection algorithm by combining existing ones. In order to verify the performance of our method, we run experiments over the bug reports of Eclipse and Mozilla and conduct comparisons with eight commonly used feature selection methods. The experiment results show that the ranking-based strategy can effectively improve the performance of the severity prediction of bug reports by up to 54.76% on average in terms of [Formula: see text]-measure, and it also can significantly reduce the dimension of the feature set. Meanwhile, the ensemble feature selection method can get better results than a single feature selection algorithm.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1238
Author(s):  
Supanat Chamchuen ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Puripong Suthisopapan ◽  
Pirat Khunkitti

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified to prevent the degradation of system reliability. This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as the feature selection algorithm. The proposed adaptive technique is applied to a combination of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet transform is used as the feature extraction method, and a probabilistic neural network is used as the classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification system demonstrated high performance in a noisy environment, as well as the real distribution system. When comparing the presented PQD classification system’s performance to previous studies, PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to classify the PQD in a practical electrical distribution system.


Sign in / Sign up

Export Citation Format

Share Document