Assessment of Heavy Metals Contamination in Agricultural Soil of Southwestern Nile Delta, Egypt

2018 ◽  
Vol 27 (7) ◽  
pp. 619-642 ◽  
Author(s):  
Moataz Khalifa ◽  
Ahmed Gad
2021 ◽  
Author(s):  
Jyoti Rani ◽  
Sudesh Chaudhary ◽  
Tripti Agarwal

Abstract The present study was conducted to assess heavy metals contamination in agricultural soils in the National Capital Region, Delhi. A total of 84 soil samples were collected from selected agricultural areas located near industries, national highways, state highways, Yamuna floodplain, residential complexes, and wastewater irrigated soils. Heavy metal concentrations (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), pH, and organic carbon (%) were analyzed in the collected soil samples. The average value of pH and organic carbon in the soil samples collected were 7.79±0.49 and 0.53±0.17 percent. Average concentrations of heavy metals in soils were found to be in the order of Fe> Al>Mn> Zn> Ni>Cr> Cu>Pb> Co> Cd with value as 14916.92 mg kg -1 , 13538.87 mg kg -1 , 277.16 mg kg -1 , 74.53 mg kg -1 , 35.34 mg kg -1 , 33.68 mg kg -1 , 22.94 mg kg -1 , 18.45 mg kg -1 , 1.88 mg kg -1 , and 0.92 mg kg -1 . A very high concentration of Fe (6640.09-32650.23 mg kg -1 ), Al (5631-27209.99 mg kg -1 ), Mn (73.8-735.72 mg kg -1 ), Zn (16.45-221.88 mg kg -1 ), Ni (7.63-192.63 mg kg -1 ), and Cr (9.65-127.21 mg kg -1 ) were recorded in agricultural soil samples. The average concentrations of Mn, Ni, and Zn in the soil samples were several times higher than their concentration in Indian natural background soils. A significant potential ecological risk has been noticed in nearly all the agricultural soil samples except for the samples collected nearby residential areas. The contamination factor has shown that most of the soil samples were moderately contaminated with Mn, Ni, Fe, and Cr and some soil samples were considerably to strongly contaminated with Cd, Zn, Pb, and Ni. Wastewater irrigated soils showed a moderate to a strong degree of accumulation of heavy metals (Cd, Ni, and Zn).


2016 ◽  
Vol 15 (3) ◽  
pp. 579-587 ◽  
Author(s):  
Maria-Ema Faciu ◽  
Francois Xavier Nshimiyimana ◽  
Souad El Blidi ◽  
Abdellah El Abidi ◽  
Abdelmajid Soulaymani ◽  
...  

Author(s):  
Diana Demiyah Mohd Hamdan ◽  
Mohd Khalizan Sabullah ◽  
Jovelyn Seludin ◽  
Amirah Syuhada Mohd Azman ◽  
Mohd Hamdan Adnan

2021 ◽  
Vol 9 (7) ◽  
pp. 1417
Author(s):  
Xuejun Wang ◽  
Si Shen ◽  
Hao Wu ◽  
Haixia Wang ◽  
Lvjing Wang ◽  
...  

Dipropyl phthalate (DPrP) coexists with cadmium as cocontaminants in environmental media. A coculture system including the DPrP-degrading bacterium Glutamicibacter nicotianae ZM05 and the nondegrading bacterium Acinetobacter tandoii ZM06 was artificially established to degrade DPrP under Cd(II) stress. Strain ZM06 relieved the pressure of cadmium on strain ZM05 and accelerated DPrP degradation in the following three ways: first, strain ZM06 adsorbed Cd(II) on the cell surface (as observed by scanning electron microscopy) to decrease the concentration of Cd(II) in the coculture system; second, the downstream metabolites of ZM05 were utilized by strain ZM06 to reduce metabolite inhibition; and third, strain ZM06 supplied amino acids and fatty acids to strain ZM05 to relieve stress during DPrP degradation, which was demonstrated by comparative transcriptomic analysis. This study provides an elementary understanding of how microbial consortia improve the degradation efficiency of organic pollutants under heavy metals contamination.


Sign in / Sign up

Export Citation Format

Share Document