A Low-Temperature Method to Synthesize Co-Substituted Mn-Zn Ferrite Nanoparticles with Distinct Magnetic Properties

Author(s):  
Youxian Zhang ◽  
Jiaona Fan ◽  
Qian Li ◽  
Yongtao An ◽  
Chuanhui Liang ◽  
...  
2021 ◽  
Vol 260 ◽  
pp. 124178
Author(s):  
Pavel Veverka ◽  
Lenka Kubíčková ◽  
Zdeněk Jirák ◽  
Vít Herynek ◽  
Miroslav Veverka ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (44) ◽  
pp. 25258-25267 ◽  
Author(s):  
R. A. Pawar ◽  
Sunil M. Patange ◽  
A. R. Shitre ◽  
S. K. Gore ◽  
S. S. Jadhav ◽  
...  

Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials.


2018 ◽  
Vol 56 (1) ◽  
pp. 31
Author(s):  
Luong Thi Quynh Anh ◽  
Nguyen Van Dan ◽  
Do Minh Nghiep

The crystalline nanoparticles of Ni0.2Zn0.8Fe2O4 ferrite were synthesized by chemical co-precipitation with precursor concentration of 0.1M, then modified by 0.25M solution of oleic acid in pentanol, finally heated at temperatures 120, 140, 160 and 180oC for 6h in autoclave. The XRD, EDS and TEM confirmed that all of samples are crystalline and their particle size are 6, 6.5, 7 and 8 nm. The magnetic properties showed that the coercive force, the remanence of samples are about zero, the saturation magnetization Ms has values from 14.20 to 27.12 emu/g.


2013 ◽  
Vol 25 (8) ◽  
pp. 086001 ◽  
Author(s):  
Bratislav Antic ◽  
Marija Perovic ◽  
Aleksandar Kremenovic ◽  
Jovan Blanusa ◽  
Vojislav Spasojevic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document