scholarly journals On extracting high-frequency tidal variability from HF radar data in the northwestern Bay of Bengal

2018 ◽  
Vol 11 (2) ◽  
pp. 65-81 ◽  
Author(s):  
Samiran Mandal ◽  
Sourav Sil ◽  
Avijit Gangopadhyay ◽  
Tad Murty ◽  
Debadatta Swain
2013 ◽  
Vol 54 (62) ◽  
pp. 59-64 ◽  
Author(s):  
K. Shirasawa ◽  
N. Ebuchi ◽  
M. Leppäranta ◽  
T. Takatsuka

AbstractA C-band sea-ice radar (SIR) network system was operated to monitor the sea-ice conditions off the Okhotsk Sea coast of northern Hokkaido, Japan, from 1969 to 2004. The system was based on three radar stations, which were capable of continuously monitoring the sea surface as far as 60 km offshore along a 250 km long coastal section. In 2004 the SIR system was closed down and a sea surface monitoring programme was commenced using high-frequency (HF) radar; this system provides information on surface currents in open-water conditions, while areas with ‘no signal’ can be identified as sea ice. The present study compares HF radar data with SIR data to evaluate their feasibility for sea-ice remote sensing. The period of overlapping data was 1.5 months. The results show that HF radar information can be utilized for ice-edge mapping although it cannot fully compensate for the loss of the SIR system. In particular, HF radar does not provide ice concentration, ice roughness and geometrical structures or ice kinematics. The probability of ice-edge detection by HF radar was 0.9 and the correlation of the ice-edge distance between the radars was 0.7.


Ocean Science ◽  
2015 ◽  
Vol 11 (6) ◽  
pp. 921-935 ◽  
Author(s):  
P. Lorente ◽  
S. Piedracoba ◽  
J. Soto-Navarro ◽  
E. Alvarez-Fanjul

Abstract. The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May–October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58–0.83] and [4.02–18.31] cm s−1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in space and time according to three significantly dominant modes of variability.


2015 ◽  
Vol 12 (4) ◽  
pp. 1913-1952 ◽  
Author(s):  
P. Lorente ◽  
S. Piedracoba ◽  
J. Soto-Navarro ◽  
E. Alvarez-Fanjul

Abstract. Ebro River Delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three site standard-range (13.5 MHz) CODAR SeaSonde High Frequency (HF) radar was deployed in 2013. Since there is a growing demand for reliable HF radar surface current measurements, the main goal of this work is to present a combined quality control methodology. Firstly, one year-long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters is conducted in order to infer both radar site status and HF radar system performance. Signal-to-noise ratio at the monopole exhibited a consistent monthly evolution although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be a sporadic episode since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May–October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and RMSE values emerged in the ranges 0.58–0.83 and 4.02–18.31 cm s−1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely: the predominant southwestward flow, the coastal clockwise eddy confined south of Ebro Delta mouth or the Ebro River impulsive-type freshwater discharge. Future works should include the use of verified HF radar data for the rigorous skill assessment of operational ocean circulation systems currently running in Ebro estuarine region like MyOcean IBI.


2011 ◽  
Vol 33 (10) ◽  
pp. 2477-2482
Author(s):  
Huan He ◽  
Heng-yu Ke ◽  
Xian-rong Wan ◽  
Fang-zhi Geng

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Adam Gauci ◽  
Aldo Drago ◽  
John Abela

High frequency (HF) radar installations are becoming essential components of operational real-time marine monitoring systems. The underlying technology is being further enhanced to fully exploit the potential of mapping sea surface currents and wave fields over wide areas with high spatial and temporal resolution, even in adverse meteo-marine conditions. Data applications are opening to many different sectors, reaching out beyond research and monitoring, targeting downstream services in support to key national and regional stakeholders. In the CALYPSO project, the HF radar system composed of CODAR SeaSonde stations installed in the Malta Channel is specifically serving to assist in the response against marine oil spills and to support search and rescue at sea. One key drawback concerns the sporadic inconsistency in the spatial coverage of radar data which is dictated by the sea state as well as by interference from unknown sources that may be competing with transmissions in the same frequency band. This work investigates the use of Machine Learning techniques to fill in missing data in a high resolution grid. Past radar data and wind vectors obtained from satellites are used to predict missing information and provide a more consistent dataset.


Author(s):  
Nathachai Thongniran ◽  
Peerapon Vateekul ◽  
Kulsawasd Jitkajornwanich ◽  
Siam Lawawirojwong ◽  
Panu Srestasathiern

2012 ◽  
Vol 62 (7) ◽  
pp. 1073-1089 ◽  
Author(s):  
Ana Julia Abascal ◽  
Sonia Castanedo ◽  
Vicente Fernández ◽  
Raúl Medina

Author(s):  
Anna Rubio ◽  
Lohitzune Solabarrieta ◽  
Manuel Gonzalez ◽  
Julien Mader ◽  
Sonia Castanedo ◽  
...  

2011 ◽  
Vol 45 (3) ◽  
pp. 111-119 ◽  
Author(s):  
Magdy F. Iskander ◽  
Zhengqing Yun ◽  
Nuri Celik ◽  
Hyoungsun Youn ◽  
Nobutaka Omaki ◽  
...  

AbstractEmerging homeland security applications require low-cost and fast, deployable, high-frequency (HF) radar systems and the ability to operate in challenging terrain environments. With the need to cover as many border and coastal areas as possible, taking advantages of available transmitter resources to track targets using passive radar technologies is yet another area of research of considerable interest. In this paper, we describe the development of an HF radar system that meets these operational challenges, and we also highlight some recent implementation of the passive radar technology for homeland security applications. Specifically, we describe the design of a novel, electrically small HF antenna system consisting of three helical elements, one connected to the feed port while the other two are folded arms terminated with switchable loads. The antenna is 0.90-m (<3 feet) high with a small ground disk of 0.60 m (∼2 feet) diameter. The antenna is self-resonant at multiple frequencies (5.7, 16, 20.5, and 27.7 MHz) and with input impedance values that can be easily matched to a 50-Ω coaxial feed. Values of the electrical size ka range from 0.44 at 30 MHz down to 0.08 at 5.7 MHz. The achieved bandwidths range from 1.4% up to 12% and associated efficiencies range from 66.2% to 76% within the HF band (3‐30 MHz). As for the operational requirement in challenging terrain environments, a setup in a hilltop-type environment with a slope terrain and surface roughness was considered. A propagation modeling and ray-tracing approach was used to evaluate the impact of such terrain conditions on the effective interelement spacing of an HF radar antenna array and the subsequent impact on its beamforming and beam steering performance. It is shown that while the effect of the slope on the effective interelement spacing of the array could be very significant, diffraction effects from surface roughness resulted in a much smaller, but significant, error of about 18°. Results from some initial work on the implementation of passive radar technology, with focus on addressing the bandwidth requirement to ensure practical resolution values, are also described. It is shown that signals from wide-band transmitters (e.g., High Definition Television [HDTV] signals) rather than those from radio stations are required to provide acceptable range resolution. These as well as simulation and experimental results of the antenna design, and results from beamforming simulations illustrating the effect of a rough hilltop terrain on the HF radar performance are described.


Sign in / Sign up

Export Citation Format

Share Document