scholarly journals Local polynomial method for frequency response function identification

2020 ◽  
Vol 8 (1) ◽  
pp. 534-540
Author(s):  
Dong Xiguang ◽  
Guo Xiaoyong ◽  
Wang Yanxiang
Author(s):  
Weimin Wang ◽  
Qihang Li ◽  
Jinji Gao ◽  
Timothy Dimond ◽  
Paul Allaire

Understanding rotor modal excitations is crucial for high performance centrifugal compressors and other rotating machines. Assuring low vibration levels of such machines at operating conditions before delivery is important both for original equipment manufacturers (OEMs) and end users. In this paper, transient simulations of a full scale test rig rotor subject to sine sweep excitations are performed to investigate the forward and backward rotor whirling response. The applied sine sweep excitations are circular forward, circular backward, and elliptical forward, respectively. The effects of excitation force amplitude are also investigated to determine the minimum force required to accurately identify the rotor system modal parameters. The transient simulation results are then used to investigate a forward and backward mode system identification method for rotating machinery stability based on sine-sweep excitations. Both simulations and experimental testing on a full size rotor with an electromagnetic actuator were performed to verify and validate the method. The traditional Multiple Input Multiple Output (MIMO) Frequency Response Function (FRF) is transformed into a directional Frequency Response Function (dFRF) form. This transformation recasts the real number field into complex number field via a transformation matrix. This transformation separates the MIMO FRFs into forward and backward components, which improves the accuracy of the identified results. This method is used to identify the first forward bending modal parameters to estimate rotor stability. The rational polynomial method is used to fit and identify both the dFRFs. Excellent correlation was obtained between simulation results and the identification experiments. The results of this paper provide new insights for avoidance of rotor instability in centrifugal compressors.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Weimin Wang ◽  
Qihang Li ◽  
Feng He ◽  
Paul Allaire

Rotordynamic stability is crucial for high performance centrifugal compressors. In this paper, the weighted instrumental variable (WIV) based system identification method for rotating machinery stability is investigated based on a sine sweep forward excitation with an electromagnetic actuator. The traditional multiple input multiple output (MIMO) frequency response function (FRF) is transformed into a directional frequency response function (dFRF). The rational polynomial method (RPM) combined with WIV is developed to identify the rotor’s first forward mode parameters. This new approach is called the COMDYN method. Experimental work using the COMDYN method is carried out under different rotating speeds, oil inlet temperatures, and pressure conditions. Two sets of bearings with preloads 0.1 and 0.3 are investigated. A numerical rotor-bearing model is also built. The numerical results correlate reasonably well with the experimental results. The investigation results indicate that the new method satisfies the desired features of rotating machine stability identification. Furthermore, the system log decrement was improved somewhat with the increase of oil inlet temperature. The increase of oil supply pressure affects the rotor-bearing system stability very slightly. The results of this paper provide new and useful insights for potentially avoiding instability faults in centrifugal compressors.


Sign in / Sign up

Export Citation Format

Share Document