scholarly journals Tranilast inhibits angiotensin II-induced myocardial fibrosis through S100A11/ transforming growth factor-β (TGF-β1)/Smad axis

Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 8447-8456
Author(s):  
Youquan Chen ◽  
Ming Huang ◽  
Yi Yan ◽  
Dequan He
2018 ◽  
Vol 3 (2) ◽  
pp. 200-212 ◽  
Author(s):  
Brendan M Giles ◽  
Timothy T Underwood ◽  
Karim A Benhadji ◽  
Diana K S Nelson ◽  
Lisa M Grobeck ◽  
...  

Abstract Background The transforming growth factor β (TGF-β)–signaling pathway has emerged as a promising therapeutic target for many disease states including hepatocellular carcinoma (HCC). Because of the pleiotropic effects of this pathway, patient selection and monitoring may be important. TGF-β1 is the most prevalent isoform, and an assay to measure plasma levels of TGF-β1 would provide a rational biomarker to assist with patient selection. Therefore, the objective of this study was to analytically validate a colorimetric ELISA for the quantification of TGF-β1 in human plasma. Methods A colorimetric sandwich ELISA for TGF-β1 was analytically validated per Clinical and Laboratory Standards Institute protocols by assessment of precision, linearity, interfering substances, and stability. A reference range for plasma TGF-β1 was established for apparently healthy individuals and potential applicability was demonstrated in HCC patients. Results Precision was assessed for samples ranging from 633 to 10822 pg/mL, with total variance ranging from 28.4% to 7.2%. The assay was linear across the entire measuring range, and no interference of common blood components or similar molecules was observed. For apparently healthy individuals, the average TGF-β1 level was 1985 ± 1488 pg/mL compared to 4243 ± 2003 pg/mL for HCC patients. Additionally, the TGF-β1 level in plasma samples was demonstrated to be stable across all conditions tested, including multiple freeze–thaw cycles. Conclusions The ELISA described in this report is suitable for the quantification of TGF-β1 in human plasma and for investigational use in an approved clinical study.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Lai-Ming Yung ◽  
Samuel D Paskin-Flerlage ◽  
Ivana Nikolic ◽  
Scott Pearsall ◽  
Ravindra Kumar ◽  
...  

Introduction: Excessive Transforming Growth Factor-β (TGF-β) signaling has been implicated in pulmonary arterial hypertension (PAH), based on activation of TGF-β effectors and transcriptional targets in affected lungs and the ability of TGF-β type I receptor (ALK5) inhibitors to improve experimental PAH. However, clinical use of ALK5 inhibitors has been limited by cardiovascular toxicity. Hypothesis: We tested whether or not selective blockade of TGF-β and Growth Differentiation Factor (GDF) ligands using a recombinant TGFβ type II receptor extracellular domain Fc fusion protein (TGFBRII-Fc) could impact experimental PAH. Methods: Male SD rats were injected with monocrotaline (MCT) and received vehicle or TGFBRII-Fc (15 mg/kg, twice per week, i.p.). C57BL/6 mice were treated with SU-5416 and hypoxia (SUGEN-HX) and received vehicle or TGFBRII-Fc. RNA-Seq was used to profile transcriptional changes in lungs of MCT rats. Circulating levels of GDF-15 were measured in 241 PAH patients and 41 healthy controls. Human pulmonary artery smooth muscle cells were used to examine signaling in vitro . Results: TGFBRII-Fc is a selective ligand trap, inhibiting the ability of GDF-15, TGF-β1, TGF-β3, but not TGF-β2 to activate SMAD2/3 in vitro . In MCT rats, prophylactic treatment with TGFBRII-Fc normalized expression of TGF-β transcriptional target PAI-1, attenuated PAH and vascular remodeling. Delayed administration of TGFBRII-Fc in rats with established PAH at 2.5 weeks led to improved survival, decreased PAH and remodeling at 5 weeks. Similar findings were observed in SUGEN-HX mice. No valvular abnormalities were found with TGFBRII-Fc treatment. RNA-Seq revealed GDF-15 to be the most highly upregulated TGF-β ligand in the lungs of MCT rats, with only modest increases in TGF-β1 and no change in TGF-β2/3 observed, suggesting a dominant role of GDF-15 in the pathophysiology of this model. Plasma levels of GDF-15 were significantly increased in patients with diverse etiologies of WHO Group I PAH. Conclusions: These findings demonstrate that a selective TGF-β/GDF-15 trap attenuates experimental PAH, remodeling and mortality, without causing valvulopathy. These data highlight the potential role of GDF-15 as a pathogenic molecule and therapeutic target in PAH.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Xi Wang ◽  
Zhe Cheng ◽  
Lingling Dai ◽  
Tianci Jiang ◽  
Liuqun Jia ◽  
...  

ABSTRACT Long noncoding RNAs (lncRNAs) are involved in various human diseases. Recently, H19 was reported to be upregulated in fibrotic rat lung and play a stimulative role in bleomycin (BLM)-induced pulmonary fibrosis in mice. However, its expression in human fibrotic lung tissues and mechanism of action remain unclear. Here, our observations showed that H19 expression was significantly upregulated and that of microRNA 140 (miR-140) was markedly reduced in pulmonary fibrotic tissues from idiopathic pulmonary fibrosis (IPF) patients and transforming growth factor β1 (TGF-β1)-induced HBE and A549 cells. Moreover, the expression of H19 was negatively correlated with the expression of miR-140 in IPF tissues. H19 knockdown attenuated TGF-β1-induced pulmonary fibrosis in vitro. Furthermore, animal experiments showed that H19 knockdown attenuated BLM-induced pulmonary fibrosis in mice. The study of molecular mechanisms showed that H19 functioned via reduction of miR-140 expression by binding to miR-140. The increase of miR-140 inhibited TGF-β1-induced pulmonary fibrosis, and H19 upregulation diminished the inhibitory effects of miR-140 on TGF-β1-induced pulmonary fibrosis, which was involved in the TGF-β/Smad3 pathway. Taken together, our findings showed that H19 knockdown attenuated pulmonary fibrosis via the regulatory network of lncRNA H19–miR-140–TGF-β/Smad3 signaling, and H19 and miR-140 might represent therapeutic targets and early diagnostic and prognostic biomarkers for patients with pulmonary fibrosis.


2001 ◽  
Vol 281 (5) ◽  
pp. C1457-C1467 ◽  
Author(s):  
Gaétan Thibault ◽  
Marie-Josée Lacombe ◽  
Lynn M. Schnapp ◽  
Alexandre Lacasse ◽  
Fatiha Bouzeghrane ◽  
...  

Using a novel pharmacological tool with125I-echistatin to detect integrins on the cell, we have observed that cardiac fibroblasts harbor five different RGD-binding integrins: α8β1, α3β1, α5β1, αvβ1, and αvβ3. Stimulation of cardiac fibroblasts by angiotensin II (ANG II) or transforming growth factor-β1 (TGF-β1) resulted in an increase of protein and heightening by 50% of the receptor density of α8β1-integrin. The effect of ANG II was blocked by an AT1, but not an AT2, receptor antagonist, or by an anti-TGF-β1 antibody. ANG II and TGF-β1 increased fibronectin secretion, smooth muscle α-actin synthesis, and formation of actin stress fibers and enhanced attachment of fibroblasts to a fibronectin matrix. The α8- and β1-subunits were colocalized by immunocytochemistry with vinculin or β3-integrin at focal adhesion sites. These results indicate that α8β1-integrin is an abundant integrin on rat cardiac fibroblasts. Its positive modulation by ANG II and TGF-β1 in a myofibroblast-like phenotype suggests the involvement of α8β1-integrin in extracellular matrix protein deposition and cardiac fibroblast adhesion.


2005 ◽  
Vol 93 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Jie Mei ◽  
Ruo-Jun Xu

It is well known that early weaning causes marked changes in intestinal structure and function, and transforming growth factor-β (TGF-β) is believed to play an important regulatory role in post-weaning adaptation of the small intestine. The present study examined the distribution and expression intensity of TGF-β in the small intestinal mucosa of pre- and post-weaning pigs using a specific immunostaining technique and Western blot analysis. The level of TGF-β in the intestinal mucosa, as estimated by Western blot analysis, did not change significantly during weaning. However, when examined by the immunostaining technique, TGF-β1 (one of the TGF-β isoforms dominantly expressed in the tissue) at the intestinal villus epithelium, particularly at the apical membrane of the epithelium, decreased significantly 4 d after weaning, while the staining intensity increased significantly at the intestinal crypts compared with that in pre-weaning pigs. These changes were transient, with the immunostaining intensity for TGF-β1 at the intestinal villi and the crypts returning to the pre-weaning level by 8 d post-weaning. The transient decrease in TGF-β1 level at the intestinal villus epithelium was associated with obvious intestinal villus atrophy and marked reduction of mucosal digestive enzyme activities. Furthermore, the number of leucocytes staining positively for TGF-β1 increased significantly in the pig intestinal lamina propria 4 d after weaning. These findings strongly suggest that TGF-β plays an important role in the post-weaning adaptation process in the intestine of the pig.


1998 ◽  
Vol 9 (9) ◽  
pp. 2627-2638 ◽  
Author(s):  
John S. Munger ◽  
John G. Harpel ◽  
Filippo G. Giancotti ◽  
Daniel B. Rifkin

The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.


Sign in / Sign up

Export Citation Format

Share Document