THE NEXT GENERATION OF LIPOSOME DELIVERY SYSTEMS: RECENT EXPERIENCE WITH TUMOR-TARGETED, STERICALLY-STABILIZED IMMUNOLIPOSOMES AND ACTIVE-LOADING GRADIENTS

2002 ◽  
Vol 12 (1-2) ◽  
pp. 1-3 ◽  
Author(s):  
R. M. Abra ◽  
R. B. Bankert ◽  
F. Chen ◽  
N. K. Egilmez ◽  
K. Huang ◽  
...  
Author(s):  
Sathish Dyawanapelly ◽  
Nishant Kumar Jain ◽  
Sindhu KR ◽  
Maruthi Prasanna ◽  
Akhilesh Vikram Singh

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae Yeon Kim ◽  
Jong Ho Choi ◽  
Ji Hye Jun ◽  
Sohae Park ◽  
Jieun Jung ◽  
...  

Abstract Background Placenta-derived mesenchymal stem cells (PD-MSCs) have been highlighted as an alternative cell therapy agent that has become a next-generation stem cell treatment. Phosphatase of regenerating liver-1 (PRL-1), an immediate early gene, plays a critical role during liver regeneration. Here, we generated enhanced PRL-1 in PD-MSCs (PD-MSCsPRL-1, PRL-1+) using lentiviral and nonviral gene delivery systems and investigated mitochondrial functions by PD-MSCPRL-1 transplantation for hepatic functions in a rat bile duct ligation (BDL) model. Methods PD-MSCsPRL-1 were generated by lentiviral and nonviral AMAXA gene delivery systems and analyzed for their characteristics and mitochondrial metabolic functions. Liver cirrhosis was induced in Sprague-Dawley (SD) rats using common BDL for 10 days. PKH67+ naïve and PD-MSCsPRL-1 using a nonviral sysyem (2 × 106 cells/animal) were intravenously administered into cirrhotic rats. The animals were sacrificed at 1, 2, 3, and 5 weeks after transplantation and engraftment of stem cells, and histopathological analysis and hepatic mitochondrial functions were performed. Results PD-MSCsPRL-1 were successfully generated using lentiviral and nonviral AMAXA systems and maintained characteristics similar to those of naïve cells. Compared with naïve cells, PD-MSCsPRL-1 improved respirational metabolic states of mitochondria. In particular, mitochondria in PD-MSCsPRL-1 generated by the nonviral AMAXA system showed a significant increase in the respirational metabolic state, including ATP production and mitochondrial biogenesis (*p < 0.05). Furthermore, transplantation of PD-MSCsPRL-1 using a nonviral AMAXA system promoted engraftment into injured target liver tissues of a rat BDL cirrhotic model and enhanced the metabolism of mitochondria via increased mtDNA and ATP production, thereby improving therapeutic efficacy. Conclusions Our findings will further our understanding of the therapeutic mechanism of enhanced MSCs and provide useful data for the development of next-generation MSC-based cell therapy and therapeutic strategies for regenerative medicine in liver disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ashish Ranjan Sharma ◽  
Shyamal Kumar Kundu ◽  
Ju-Suk Nam ◽  
Garima Sharma ◽  
C. George Priya Doss ◽  
...  

Proteins and genes of therapeutic interests in conjunction with different delivery systems are growing towards new heights. “Next generation delivery systems” may provide more efficient platform for delivery of proteins and genes. In the present review, snapshots about the benefits of proteins or gene therapy, general procedures for therapeutic protein or gene delivery system, and different next generation delivery system such as liposome, PEGylation, HESylation, and nanoparticle based delivery have been depicted with their detailed explanation.


2021 ◽  
Vol 22 ◽  
Author(s):  
Arun Radhakrishnan ◽  
Gowthamarajan Kuppusamy

: Individualizing drug therapy and attaining maximum benefits of a drug devoid of adverse reactions is the benefit of personalized medicine. One of the important factors contributing to inter-individual variability is genetic polymorphism. As of now, dose titration is the only followed golden standard for implementing personalized medicine. Converting the genotypic data into an optimized dose has become easier now due to technology development. However, for many drugs, finding an individualized dose may not be successful, which further leads to a trial and error approach. These dose titration strategies are generally followed at the clinical level, and so industrial involvement and further standardizations are not feasible. On the other side, technologically driven pharmaceutical industries have multiple smart drug delivery systems which are underutilized towards personalized medicine. Transdisciplinary research with drug delivery science can additionally support the personalization by converting the traditional concept of “dose titration towards personalization” with novel “dose-cum-dosage form modification towards next-generation personalized medicine”; the latter approach is useful to overcome gene-based inter-individual variability by either blocking, downregulating, or bypassing the biological protein generated by the polymorphic gene. This article elaborates an advanced approach to implement personalized medicine with the support of novel drug delivery systems. As a case study, we further reviewed the genetic polymorphisms associated with tacrolimus and customized novel drug delivery systems to overcome these challenges factored towards personalized medicine for better clinical outcomes, thereby paving a new strategy for implementing personalized medicine for all other drug candidates.


Sign in / Sign up

Export Citation Format

Share Document