scholarly journals Requirement for transglutaminase in the activation of latent transforming growth factor-beta in bovine endothelial cells.

1993 ◽  
Vol 121 (2) ◽  
pp. 439-448 ◽  
Author(s):  
S Kojima ◽  
K Nara ◽  
D B Rifkin

A hitherto unknown function for transglutaminase (TGase; R-glutaminyl-peptide: amine gamma-glutamyltransferase, EC 2.3.2.13) was found in the conversion of latent transforming growth factor-beta (LTGF-beta) to active TGF-beta by bovine aortic endothelial cells (BAECs). The cell-associated, plasmin-mediated activation of LTGF-beta to TGF-beta induced either by treatment of BAECs with retinoids or by cocultures of BAECs and bovine smooth muscle cells (BSMCs) was blocked by seven different inhibitors of TGase as well as a neutralizing antibody to bovine endothelial cell type II TGase. Control experiments indicated that TGase inhibitors and/or a neutralizing antibody to TGase did not interfere with the direct action of TGF-beta, the release of LTGF-beta from cells, or the activation of LTGF-beta by plasmin or by transient acidification. After treatment with retinoids, BAECs expressed increased levels of TGase coordinate with the generation of TGF-beta, whereas BSMCs and bovine embryonic skin fibroblasts, which did not activate LTGF-beta after treatment with retinoids, did not. Furthermore, both TGase inhibitors and a neutralizing antibody to TGase potentiated the effect of retinol in enhancing plasminogen activator (PA) levels in cultures of BAECs by suppressing the TGF-beta-mediated enhancement of PA inhibitor-1 (PAI-1) expression. These results indicate that type II TGase is a component required for cell surface, plasmin-mediated LTGF-beta activation process and that increased expression of TGase accompanies retinoid-induced activation of LTGF-beta.

1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


1987 ◽  
Vol 105 (2) ◽  
pp. 957-963 ◽  
Author(s):  
O Saksela ◽  
D Moscatelli ◽  
D B Rifkin

Basic fibroblast growth factor (bFGF), a potent inducer of angiogenesis in vivo, stimulates the production of both urokinase- and tissue-type plasminogen activators (PAs) in cultured bovine capillary endothelial cells. The observed increase in proteolytic activity induced by bFGF was effectively diminished by picogram amounts of transforming growth factor beta (TGF beta), but could not be abolished by increasing the amount of TGF beta. However, the inhibition by TGF beta was greatly enhanced if the cells were pretreated with TGF beta before addition of bFGF. After prolonged incubation of cultures treated simultaneously with bFGF and TGF beta, the inhibitory effect of TGF beta diminished and the stimulatory effect of the added bFGF dominated as assayed by PA levels. TGF beta did not alter the receptor binding of labeled bFGF, nor did a 6-h pretreatment with TGF beta reduce the amount of bFGF bound. The major difference between the effects of bFGF and TGF beta was that while bFGF effectively enhanced PA activity expressed by the cells, TGF beta decreased the amounts of both cell-associated and secreted PA activity by decreasing enzyme production. Both bFGF and TGF beta increased the secretion of the endothelial-type plasminogen activator inhibitor.


1994 ◽  
Vol 126 (1) ◽  
pp. 139-154 ◽  
Author(s):  
Y I Henis ◽  
A Moustakas ◽  
H Y Lin ◽  
H F Lodish

Affinity-labeling experiments have detected hetero-oligomers of the types I, II, and III transforming growth factor beta (TGF-beta) receptors which mediate intracellular signaling by TGF-beta, but the oligomeric state of the individual receptor types remains unknown. Here we use two types of experiments to show that a major portion of the receptor types II and III forms homo-oligomers both in the absence and presence of TGF-beta. Both experiments used COS-7 cells co-transfected with combinations of these receptors carrying different epitope tags at their extracellular termini. In immunoprecipitation experiments, radiolabeled TGF-beta was bound and cross-linked to cells co-expressing two differently tagged type II receptors. Sequential immunoprecipitations using anti-epitope monoclonal antibodies showed that type II TGF-beta receptors form homo-oligomers. In cells co-expressing epitope-tagged types II and III receptors, a low level of co-precipitation of the ligand-labeled receptors was observed, indicating that some hetero-oligomers of the types II and III receptors exist in the presence of ligand. Antibody-mediated cross-linking studies based on double-labeling immunofluorescence explored co-patching of the receptors at the cell surface on live cells. In cells co-expressing two differently tagged type II receptors or two differently tagged type III receptors, forcing one receptor into micropatches by IgG induced co-patching of the receptor carrying the other tag, labeled by noncross-linking monovalent Fab'. These studies showed that homo-oligomers of the types II and III receptors exist on the cell surface in the absence or presence of TGF-beta 1 or -beta 2. In cells co-expressing types II and III receptors, the amount of heterocomplexes at the cell surface was too low to be detected in the immunofluorescence co-patching experiments, confirming that hetero-oligomers of the types II and III receptors are minor and probably transient species.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 180-189 ◽  
Author(s):  
BA Pierson ◽  
K Gupta ◽  
WS Hu ◽  
JS Miller

Natural killer cells (NK) were studied to determine factors important in their expansion. Flourescence-activated cell sorter (FACS) purified CD56+/CD3- NK cells cultured alone for 18 days in rIL-2 containing medium (1,000 U/mL) showed enhanced cytotoxicity but only minimal expansion. NK expansion was increased (12.5 +/- 1.6-fold) by coculturing NK with soluble factors produced by irradiated peripheral blood mononuclear cells (PBMNC) in which the two populations were separated by a microporous membrane. However, maximal NK expansion was always observed when NK were cocultured in direct contact with irradiated PBMNC (49.4 +/- 5.9-fold). To determine if marrow stroma, which supports differentiation of primitive NK progenitors, was a better accessory cell population than irradiated PBMNC, NK were cocultured in direct contact with primary marrow stromal layers. NK expansion with marrow stroma was similar to PBMNC. Fibroblast cell lines (M2–10B4, NRK-49F, NIH-3T3) and human umbilical vein endothelial cells (HUVEC), all homogeneous populations and devoid of monocytes, also exhibited a similar contact-dependent increase in NK expansion. Experiments were designed using fixed M2–10B4 stromal cells to separate the contact-induced proliferative stimuli from soluble factors. NK plated directly on ethanol/acetic acid-fixed M2–10B4, which leaves stromal ligands (cell membrane components and ECM) intact, resulted in increased NK expansion compared with medium alone. We further show that the combination of independent contact and soluble factors is responsible for maximal late NK expansion (days 28 through 40) but paradoxically inhibits early NK expansion (day 7). The proliferation inhibitory effects were verified by 3H-thymidine uptake and could be detected at days 2 through 6 but no longer 14 days after the initiation of the culture. We show that both laminin and thrombospondin inhibit early NK proliferation, whereas only thrombospondin was capable of also stimulating late NK expansion. The effect of thrombospondin on early NK proliferation is related to activation of transforming growth factor-beta 1 (TGF-beta) because anti-TGF-beta neutralizing antibody completely abrogated thrombospondin-mediated inhibition of early NK proliferation. Although inhibitory early in culture, active TGF-beta added only at culture initiation increases late NK expansion similar to thrombospondin. TGF-beta was not present in the thrombospondin preparation but latent TGF-beta in serum, or TGF-beta transcripts identified in IL-2-activated NK could explain paracrine or autocrine mechanisms for the regulation of NK proliferation. Finally, anti-TGF-beta neutralizing antibody only minimally affects stroma-mediated inhibition of early NK proliferation suggesting that aside from thrombospondin/TGF-beta, additional contact factors are important for the regulation of NK proliferation.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1013-1019 ◽  
Author(s):  
SR Slivka ◽  
DJ Loskutoff

Abstract A model system consisting of thrombin-stimulated bovine platelet releasates (PRthr) and bovine aortic endothelial cells (BAEs) was developed to determine if the interaction between platelets and endothelial cells regulates fibrinolysis. Zymographic analysis indicated that PRthr treatment of BAEs decreases urokinase and increases type 1 plasminogen activator inhibitor (PAI-1) activity. Although PRthr did not affect the overall rate of BAE protein synthesis, it increased PAI-1 biosynthesis within 6 hours. This increase was complete by 12 hours, with maximum stimulation at 10 to 15 micrograms/mL PRthr (1 microgram approximately 10(7) platelets). Neutralizing antibodies to transforming growth factor beta (TGF beta) reduced this effect by 75%. Treatments that activate latent TGF beta (eg, acidification or plasmin) increased this effect approximately fivefold, suggesting that TGF beta in PRthr exists in both a latent (approximately 80%) and an active (approximately 20%) form. In contrast to PRthr, adenosine diphosphate-prepared platelet releasates did not increase PAI-1 synthesis before acidification, indicating that they contain only the latent form of TGF beta. These results suggest that platelets can modulate the fibrinolytic system of the endothelium through the release of TGF beta, and that the mechanism by which the platelets are activated can influence the relative amount of active TGF beta.


1995 ◽  
Vol 269 (3) ◽  
pp. L419-L426 ◽  
Author(s):  
Y. Zhao ◽  
S. L. Young

Transforming growth factor-beta (TGF-beta) is an autocrine/paracrine growth factor that regulates cell proliferation, differentiation, extracellular matrix production and various other cell functions in the lung. TGF-beta exerts its effects on cells by binding to transmembrane heteromeric serine-threonine kinase receptors. The expression and localization of specific TGF-beta receptors in the lung, however, have not yet been investigated. In the present studies, we isolated a 1,762-base pair cDNA containing the full-length coding sequence for TGF-beta type II receptor (T beta RII) from rat fetal lung with the use of polymerase chain reaction methods. The expression of T beta RII during lung development was examined by Northern analysis. A 5.1-kilobase T beta RII mRNA was detected in rat lung tissue. T beta RII mRNA was expressed in rat fetal lung tissue early in development, increased as development proceeded, reached maximal concentration postnatally, and then decreased to the adult level. The localization of T beta RII in fetal and postnatal rat lung tissue was investigated with the use of in situ hybridization performed with an antisense RNA probe. T beta RII gene was expressed in the mesenchymal tissue and in the epithelial lining of the developing airway at day 16 of gestation. The hybridization signal of T beta RII mRNA was also observed in the adventitial layer of small blood vessels. Expression of T beta RII gene in the developing airway epithelium occurred along a proximal-distal gradient. In postnatal lung, T beta RII mRNA was detected mainly in parenchymal tissues and blood vessels. Expression of T beta RII remained high in the interstitium of interalveolar septa.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 619-626 ◽  
Author(s):  
DJ Kuter ◽  
DM Gminski ◽  
RD Rosenberg

Abstract Using a rat bone marrow culture system, the effect of transforming growth factor beta 1 (TGF beta 1) on megakaryocyte growth and endoreduplication has been studied. Purified human platelet TGF beta 1 inhibited the number of megakaryocytes that appeared in culture at a half-maximal concentration of 0.66 +/- 0.21 ng/mL and inhibited megakaryocyte endoreduplication at a half-maximal concentration of 0.14 +/- 0.08 ng/mL. Under identical conditions, growth of erythroid precursors was half-maximally inhibited at a concentration of 0.125 ng/mL while myeloid growth was not inhibited at concentrations of TGF beta 1 up to 25 ng/mL. These profound inhibitory effects on megakaryocyte growth and endomitosis suggested that TGF beta might play a role in megakaryocytopoiesis. Therefore, we explored the effect of TGF beta in three different experimental situations by using a neutralizing antibody to TGF beta: (1) Serum but not plasma was found to inhibit the number and ploidy of megakaryocytes that grew in vitro. This inhibitory activity was completely neutralized by antibody to TGF beta or on treatment with dithiothreitol. (2) Plasma from thrombocytotic rats was observed to decrease megakaryocyte ploidy on culture but this effect was not prevented by the addition of antibody to TGF beta. (3) Plasma from thrombocytopenic but not normal rats increased megakaryocyte ploidy on culture. Addition of antibody to TGF beta did not alter these results. Therefore, TGF beta is a potent inhibitor of the number and ploidy of megakaryocytes and accounts for all the inhibition seen when megakaryocytes are cultured in serum. However, the differences in effect on megakaryocyte growth that we observe between normal, thrombocytopenic, and thrombocytotic plasmas are not due to variations in the amount of TGF beta. Furthermore, our results show that release of TGF beta from megakaryocytes during culture does not act as an autocrine regulator of megakaryocyte ploidy in vitro.


Sign in / Sign up

Export Citation Format

Share Document