scholarly journals The UNC-45 chaperone mediates sarcomere assembly through myosin degradation in Caenorhabditis elegans

2007 ◽  
Vol 177 (2) ◽  
pp. 205-210 ◽  
Author(s):  
Megan L. Landsverk ◽  
Shumin Li ◽  
Alex H. Hutagalung ◽  
Ayaz Najafov ◽  
Thorsten Hoppe ◽  
...  

Myosin motors are central to diverse cellular processes in eukaryotes. Homologues of the myosin chaperone UNC-45 have been implicated in the assembly and function of myosin-containing structures in organisms from fungi to humans. In muscle, the assembly of sarcomeric myosin is regulated to produce stable, uniform thick filaments. Loss-of-function mutations in Caenorhabditis elegans UNC-45 lead to decreased muscle myosin accumulation and defective thick filament assembly, resulting in paralyzed animals. We report that transgenic worms overexpressing UNC-45 also display defects in myosin assembly, with decreased myosin content and a mild paralysis phenotype. We find that the reduced myosin accumulation is the result of degradation through the ubiquitin/proteasome system. Partial proteasome inhibition is able to restore myosin protein and worm motility to nearly wild-type levels. These findings suggest a mechanism in which UNC-45–related proteins may contribute to the degradation of myosin in conditions such as heart failure and muscle wasting.

2021 ◽  
Vol 22 (5) ◽  
pp. 2689
Author(s):  
Jianmin Si ◽  
Chris Van den Haute ◽  
Evy Lobbestael ◽  
Shaun Martin ◽  
Sarah van Veen ◽  
...  

ATP13A2, a late endo-/lysosomal polyamine transporter, is implicated in a variety of neurodegenerative diseases, including Parkinson’s disease and Kufor–Rakeb syndrome, an early-onset atypical form of parkinsonism. Loss-of-function mutations in ATP13A2 result in lysosomal deficiency as a consequence of impaired lysosomal export of the polyamines spermine/spermidine. Furthermore, accumulating evidence suggests the involvement of ATP13A2 in regulating the fate of α-synuclein, such as cytoplasmic accumulation and external release. However, no consensus has yet been reached on the mechanisms underlying these effects. Here, we aimed to gain more insight into how ATP13A2 is linked to α-synuclein biology in cell models with modified ATP13A2 activity. We found that loss of ATP13A2 impairs lysosomal membrane integrity and induces α-synuclein multimerization at the membrane, which is enhanced in conditions of oxidative stress or exposure to spermine. In contrast, overexpression of ATP13A2 wildtype (WT) had a protective effect on α-synuclein multimerization, which corresponded with reduced αsyn membrane association and stimulation of the ubiquitin-proteasome system. We also found that ATP13A2 promoted the secretion of α-synuclein through nanovesicles. Interestingly, the catalytically inactive ATP13A2 D508N mutant also affected polyubiquitination and externalization of α-synuclein multimers, suggesting a regulatory function independent of the ATPase and transport activity. In conclusion, our study demonstrates the impact of ATP13A2 on α-synuclein multimerization via polyamine transport dependent and independent functions.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1929
Author(s):  
Eva M. Huber ◽  
Michael Groll

At the heart of the ubiquitin–proteasome system, the 20S proteasome core particle (CP) breaks down the majority of intracellular proteins tagged for destruction. Thereby, the CP controls many cellular processes including cell cycle progression and cell signalling. Inhibitors of the CP can suppress these essential biological pathways, resulting in cytotoxicity, an effect that is beneficial for the treatment of certain blood cancer patients. During the last decade, several preclinical studies demonstrated that selective inhibition of the immunoproteasome (iCP), one of several CP variants in mammals, suppresses autoimmune diseases without inducing toxic side effects. These promising findings led to the identification of natural and synthetic iCP inhibitors with distinct chemical structures, varying potency and subunit selectivity. This review presents the most prominent iCP inhibitors with respect to possible scientific and medicinal applications, and discloses recent trends towards pan-immunoproteasome reactive inhibitors that cumulated in phase II clinical trials of the lead compound KZR-616 for chronic inflammations.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1577
Author(s):  
Nuria Tubío-Santamaría ◽  
Frédéric Ebstein ◽  
Florian H. Heidel ◽  
Elke Krüger

The ubiquitin–proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.


2013 ◽  
Vol 31 (9) ◽  
pp. 1231-1238 ◽  
Author(s):  
Lindsey N. Micel ◽  
John J. Tentler ◽  
Peter G. Smith ◽  
Gail S. Eckhardt

The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 283
Author(s):  
Daniel Aghaie Madsen ◽  
Sissel Ida Schmidt ◽  
Morten Blaabjerg ◽  
Morten Meyer

Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson’s disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.


PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1010015
Author(s):  
Cécile Ribot ◽  
Cédric Soler ◽  
Aymeric Chartier ◽  
Sandy Al Hayek ◽  
Rima Naït-Saïdi ◽  
...  

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryosuke Hayama ◽  
Peizhen Yang ◽  
Federico Valverde ◽  
Tsuyoshi Mizoguchi ◽  
Ikuyo Furutani-Hayama ◽  
...  

AbstractProtein ubiquitylation participates in a number of essential cellular processes including signal transduction and transcription, often by initiating the degradation of specific substrates through the 26S proteasome. Within the ubiquitin-proteasome system, deubiquitylating enzymes (DUBs) not only help generate and maintain the supply of free ubiquitin monomers, they also directly control functions and activities of specific target proteins by modulating the pool of ubiquitylated species. Ubiquitin carboxyl-terminal hydrolases (UCHs) belong to an enzymatic subclass of DUBs, and are represented by three members in Arabidopsis, UCH1, UCH2 and UCH3. UCH1 and UCH2 influence auxin-dependent developmental pathways in Arabidopsis through their deubiquitylation activities, whereas biological and enzymatic functions of UCH3 remain unclear. Here, we demonstrate that Arabidopsis UCH3 acts to maintain the period of the circadian clock at high temperatures redundantly with UCH1 and UCH2. Whereas single uch1, uch2 and uch3 mutants have weak circadian phenotypes, the triple uch mutant displays a drastic lengthening of period at high temperatures that is more extreme than the uch1 uch2 double mutant. UCH3 also possesses a broad deubiquitylation activity against a range of substrates that link ubiquitin via peptide and isopeptide linkages. While the protein target(s) of UCH1-3 are not yet known, we propose that these DUBs act on one or more factors that control period length of the circadian clock through removal of their bound ubiquitin moieties, thus ensuring that the clock oscillates with a proper period even at elevated temperatures.


2016 ◽  
Vol 212 (7) ◽  
pp. 789-801 ◽  
Author(s):  
Maria J. Pinto ◽  
Pedro L. Alves ◽  
Luís Martins ◽  
Joana R. Pedro ◽  
Hyun R. Ryu ◽  
...  

Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses.


2020 ◽  
Vol 8 (9) ◽  
pp. 1424
Author(s):  
Hye-Ra Lee ◽  
Myoung Kyu Lee ◽  
Chan Woo Kim ◽  
Meehyein Kim

The ubiquitin-proteasome system (UPS) has been recognized for regulating fundamental cellular processes, followed by induction of proteasomal degradation of target proteins, and triggers multiple signaling pathways that are crucial for numerous aspects of cellular physiology. Especially tripartite motif (TRIM) proteins, well-known E3 ubiquitin ligases, emerge as having critical roles in several antiviral signaling pathways against varying viral infections. Here we highlight recent advances in the study of antiviral roles of TRIM proteins toward influenza virus infection in terms of the modulation of pathogen recognition receptor (PRR)-mediated innate immune sensing, direct obstruction of influenza viral propagation, and participation in virus-induced autophagy.


2015 ◽  
Vol 43 (3) ◽  
pp. 476-481 ◽  
Author(s):  
Tânia Martins-Marques ◽  
Steve Catarino ◽  
Carla Marques ◽  
Paulo Pereira ◽  
Henrique Girão

The main function of the heart is to pump blood to the different parts of the organism, a task that is efficiently accomplished through proper electric and metabolic coupling between cardiac cells, ensured by gap junctions (GJ). Cardiomyocytes are the major cell population in the heart, and as cells with low mitotic activity, are highly dependent upon mechanisms of protein degradation. In the heart, both the ubiquitin-proteasome system (UPS) and autophagy participate in the fine-tune regulation of cardiac remodelling and function, either in physiological or pathological conditions. Indeed, besides controlling cardiac signalling pathways, UPS and autophagy have been implicated in the turnover of several myocardial proteins. Degradation of Cx43, the major ventricular GJ protein, has been associated to up-regulation of autophagy at the onset of heart ischemia and ischemia/reperfusion (I/R), which can have profound implications upon cardiac function. In this review, we present recent studies devoted to the involvement of autophagy and UPS in heart homoeostasis, with a particular focus on GJ.


Sign in / Sign up

Export Citation Format

Share Document