scholarly journals Unconventional secretion of Acb1 is mediated by autophagosomes

2010 ◽  
Vol 188 (4) ◽  
pp. 527-536 ◽  
Author(s):  
Juan M. Duran ◽  
Christophe Anjard ◽  
Chris Stefan ◽  
William F. Loomis ◽  
Vivek Malhotra

Starving Dictyostelium discoideum cells secrete AcbA, an acyl coenzyme A–binding protein (ACBP) that lacks a conventional signal sequence for entering the endoplasmic reticulum (ER). Secretion of AcbA in D. discoideum requires the Golgi-associated protein GRASP. In this study, we report that starvation-induced secretion of Acb1, the Saccharomyces cerevisiae ACBP orthologue, also requires GRASP (Grh1). This highlights the conserved function of GRASP in unconventional secretion. Although genes required for ER to Golgi or Golgi to cell surface transport are not required for Acb1 secretion in yeast, this process involves autophagy genes and the plasma membrane t-SNARE, Sso1. Inhibiting transport to vacuoles does not affect Acb1 secretion. In sum, our experiments reveal a unique secretory pathway where autophagosomes containing Acb1 evade fusion with the vacuole to prevent cargo degradation. We propose that these autophagosome intermediates fuse with recycling endosomes instead to form multivesicular body carriers that then fuse with the plasma membrane to release cargo.

1996 ◽  
Vol 133 (5) ◽  
pp. 1017-1026 ◽  
Author(s):  
A E Cleves ◽  
D N Cooper ◽  
S H Barondes ◽  
R B Kelly

Several physiologically important proteins lack a classical secretory signal sequence, yet they are secreted from cells. To investigate the secretion mechanism of such proteins, a representative mammalian protein that is exported by a nonclassical mechanism, galectin-1, has been expressed in yeast. Galectin-1 is exported across the yeast plasma membrane, and this export does not require the classical secretory pathway nor the yeast multidrug resistance-like protein Ste6p, the transporter for the peptide a factor. A screen for components of the export machinery has identified genes that are involved in nonclassical export. These findings demonstrate a new pathway for protein export that is distinct from the classical secretory pathway in yeast.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1277-1292 ◽  
Author(s):  
Rajesh R Naik ◽  
Elizabeth W Jones

Abstract The vacuolar hydrolase protease B in Saccharomyces cerevisiae is synthesized as an inactive precursor (Prb1p). The precursor undergoes post-translational modifications while transiting the secretory pathway. In addition to N- and O -linked glycosylations, four proteolytic cleavages occur during the maturation of Prb1p. Removal of the signal peptide by signal peptidase and the autocatalytic cleavage of the large aminoterminal propeptide occur in the endoplasmic reticulum (ER). Two carboxy-terminal cleavages of the post regions occur in the vacuole: the first cleavage is catalyzed by protease A and the second results from autocatalysis. We have isolated a mutant, pbn1-1, that exhibits a defect in the ER processing of Prb1p. The autocatalytic cleavage of the propeptide from Prb1p does not occur and Prb1p is rapidly degraded in the cytosol. PBN1 was cloned and is identical to YCL052c on chromosome III. PBN1 is an essential gene that encodes a novel protein. Pbn1p is predicted to contain a sub-C-terminal transmembrane domain but no signal sequence. A functional HA epitope-tagged Pbn1p fusion localizes to the ER. Pbn1p is N-glycosylated in its amino-terminal domain, indicating a lumenal orientation despite the lack of a signal sequence. Based on these results, we propose that one of the functions of Pbn1p is to aid in the autocatalytic processing of Prb1p.


1986 ◽  
Vol 6 (7) ◽  
pp. 2382-2391
Author(s):  
C A Kaiser ◽  
D Botstein

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


2012 ◽  
Vol 11 (5) ◽  
pp. 590-600 ◽  
Author(s):  
Fabien Lefèbvre ◽  
Valérie Prouzet-Mauléon ◽  
Michel Hugues ◽  
Marc Crouzet ◽  
Aurélie Vieillemard ◽  
...  

ABSTRACT Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae , the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P 2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2369-2376 ◽  
Author(s):  
Sharmistha Ghosh ◽  
Sarah Hevi ◽  
Steven L. Chuck

Abstract Serum ferritin has been used widely in clinical medicine chiefly as an indicator of iron stores and inflammation. Circulating ferritin also can have paracrine effects. Despite the clinical significance of serum ferritin, its secretion remains an enigma. The consensus view is that serum ferritin arises from tissue ferritins— principally ferritin light—which can be glycosylated. Ferritin heavy and light chains are cytosolic proteins that form cages of 24 subunits to store intracellular iron. We show that ferritin light is secreted when its expression is increased in stable, transfected HepG2 cells or adenovirus-infected HepG2 cells. Export occurs through the classical secretory pathway and some chains are N-glycosylated. Ferritins do not need to form cages prior to secretion. Secretion is blocked specifically, effectively, and rapidly by a factor in serum. The timing of this inhibition of ferritin secretion suggests that normally cytosolic ferritin L is targeted to the secretory pathway during translation despite the absence of a conventional signal sequence. Thus, secretion of glycosylated and unglycosylated ferritin is a regulated and not a stochastic process.


2003 ◽  
Vol 23 (18) ◽  
pp. 6574-6584 ◽  
Author(s):  
Xiangwen Dong ◽  
David A. Mitchell ◽  
Sandra Lobo ◽  
Lihong Zhao ◽  
Douglas J. Bartels ◽  
...  

ABSTRACT Subcellular localization of Ras proteins to the plasma membrane is accomplished in part by covalent attachment of a farnesyl moiety to the conserved CaaX box cysteine. Farnesylation targets Ras to the endoplasmic reticulum (ER), where additional processing steps occur, resulting in translocation of Ras to the plasma membrane. The mechanism(s) by which this occurs is not well understood. In this report, we show that plasma membrane localization of Ras2p in Saccharomyces cerevisiae does not require the classical secretory pathway or a functional Golgi apparatus. However, when the classical secretory pathway is disrupted, plasma membrane localization requires Erf2p, a protein that resides in the ER membrane and is required for efficient palmitoylation of Ras2p. Deletion of ERF2 results in a Ras2p steady-state localization defect that is more severe when combined with sec-ts mutants or brefeldin A treatment. The Erf2p-dependent localization of Ras2p correlates with the palmitoylation of Cys-318. An Erf2p-Erf4p complex has recently been shown to be an ER-associated palmitoyltransferase that can palmitoylate Cys-318 of Ras2p (S. Lobo, W. K. Greentree, M. E. Linder, and R. J. Deschenes, J. Biol. Chem. 277:41268-41273, 2002). Erf2-dependent palmitoylation as well as localization of Ras2p requires a region of the hypervariable domain adjacent to the CaaX box. These results provide evidence for the existence of a palmitoylation-dependent, nonclassical endomembrane trafficking system for the plasma membrane localization of Ras proteins.


1986 ◽  
Vol 6 (7) ◽  
pp. 2382-2391 ◽  
Author(s):  
C A Kaiser ◽  
D Botstein

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


2003 ◽  
Vol 161 (6) ◽  
pp. 1117-1131 ◽  
Author(s):  
Kyohei Umebayashi ◽  
Akihiko Nakano

It was known that the uptake of tryptophan is reduced in the yeast erg6 mutant, which is defective in a late step of ergosterol biosynthesis. Here, we show that this is because the high affinity tryptophan permease Tat2p is not targeted to the plasma membrane. In wild-type cells, the plasma membrane localization of Tat2p is regulated by the external tryptophan concentration. Tat2p is transported from the Golgi apparatus to the vacuole at high tryptophan, and to the plasma membrane at low tryptophan. However, in the erg6 mutant, Tat2p is missorted to the vacuole at low tryptophan. The plasma membrane targeting of Tat2p is dependent on detergent-insoluble membrane domains, suggesting that sterol affects the sorting through the organization of lipid rafts. The erg6 mutation also caused missorting to the multivesicular body pathway in late endosomes. Thus, sterol composition is crucial for protein sorting late in the secretory pathway. Tat2p is subject to polyubiquitination, which acts as a vacuolar-targeting signal, and the inhibition of this process suppresses the Tat2p sorting defects of the erg6 mutant. The sorting mechanisms of Tat2p that depend on both sterol and ubiquitin will be discussed.


2003 ◽  
Vol 384 (1) ◽  
pp. 175-182 ◽  
Author(s):  
J. Müllegger ◽  
A. Rustom ◽  
G. Kreil ◽  
H.-H. Gerdes ◽  
G. Lepperdinger

AbstractHyaluronan is the sole glycosaminoglycan whose biosynthesis takes place directly at the plasma membrane. The mechanism by which hyaluronan synthase (HAS) becomes inserted there, as well as the question of how the enzyme discriminates between particular membrane species in polarized cells, are largely unknown. In vitro translation of HAS suggested that the nascent protein becomes stabilized in the presence of microsomal membranes, but would not insert spontaneously into membranes after being translated in the absence of those. We therefore monitored the membrane attachment of enzymatically active fusion proteins consisting of Xenopus HAS1 and green fluorescent protein shortly after de novo synthesis in Vero cells. Our data strongly suggest that HAS proteins are directly translated on the ER membrane without exhibiting an N-terminal signal sequence. From there the inactive protein is transferred to the plasma membrane via the secretory pathway. For unknown reasons, HAS inserted into membranes other than the plasma membrane remains inactive.


2002 ◽  
Vol 76 (8) ◽  
pp. 3720-3730 ◽  
Author(s):  
Séverine Carrère-Kremer ◽  
Claire Montpellier-Pala ◽  
Laurence Cocquerel ◽  
Czeslaw Wychowski ◽  
François Penin ◽  
...  

ABSTRACT Although biological and biochemical data have been accumulated on most hepatitis C virus proteins, the structure and function of the 63-amino-acid p7 polypeptide of this virus have never been investigated. In this work, sequence analyses predicted that p7 contains two transmembrane passages connected by a short hydrophilic segment. The C-terminal transmembrane domain of p7 was predicted to function as a signal sequence, which was confirmed experimentally by analyzing the translocation of a reporter glycoprotein fused at its C terminus. The p7 polypeptide was tagged either with the ectodomain of CD4 or with a Myc epitope to study its membrane integration, its subcellular localization, and its topology. Alkaline extraction studies confirmed that p7 is an integral membrane polypeptide. The CD4-p7 chimera was detected by immunofluorescence on the surface of nonpermeabilized cells, indicating that it is exported to the plasma membrane. However, pulse-chase analyses showed that only approximately 20% of endoglycosidase H-resistant CD4-p7 was detected after long chase times, suggesting that a large proportion of p7 stays in an early compartment of the secretory pathway. Finally, by inserting a Myc epitope in several positions of p7 and analyzing the accessibility of this epitope on the plasma membrane of HepG2 cells, we showed that p7 has a double membrane-spanning topology, with both its N and C termini oriented toward the extracellular environment. Altogether, these data indicate that p7 is a polytopic membrane protein that could have a functional role in several compartments of the secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document