scholarly journals WOUND HEALING AND COLLAGEN FORMATION

1970 ◽  
Vol 44 (3) ◽  
pp. 645-654 ◽  
Author(s):  
Russell Ross ◽  
Newton B. Everett ◽  
Ruth Tyler

Healing skin wounds were studied in a series of parabiotic rats. The femurs of one parabiont of each pair were shielded whilst both animals were given 800 r from a Co60 source. The animals were wounded 3 days after irradiation. Each animal with partially shielded marrow was then given tritiated thymidine intraperitoneally daily while the cross-circulation was arrested by clamping. After the thymidine-3H had cleared the blood, the clamp was released. Animals were sacrificed, and wounds were prepared for radioautography 1, 2, and 6 days after wounding. In the wounds of the shielded animals thymidine-3H was observed in epidermis, endothelium, leukocytes, fibroblasts, and mast cells. Only neutrophilic leukocytes, monocytes, and lymphocytes were labeled, as determined by light and electron microscope radioautography, in the wounds of each nonshielded parabiont. None of the many fibroblasts present were found to contain label in the wounds of the nonshielded parabionts through the 6 day period. These observations provide further evidence that wound fibroblasts do not arise from hematogenous precursors and, therefore, must arise from adjacent connective tissue cells.

2018 ◽  
Vol 39 (4) ◽  
pp. 1547
Author(s):  
Mariana Teixeira Tillmann ◽  
Cláudia Beatriz De Mello Mendes ◽  
Geferson Fischer ◽  
Antonio Sergio Varela Júnior ◽  
Cristina Gevehr Fernandes ◽  
...  

Phytoterapic compounds have been used in wound healing for many centuries. Nowadays, scientific evidences of phytotherapeutics is a requirement of the legislation. The scientific literature notes the need for healing topics yielding scars that are both aesthetically appealing and resistant. We aimed to evaluate the cytotoxicity of several doses of T. aestivum extract (2 mg mL-1, 4 mg mL-1, 6 mg mL-1, 8 mg mL-1 and 10 mg mL-1) in a fibroblast cell line and the healing process in an in vivo experimental model (New Zealand rabbits). For this, MTT test in 3T6 cells was performed in duplicates using MEM (0 mg ml-1) as negative control. Cell viability was calculated as: absorbance average in treatments/absorbance average in controls x 100. In vivo test was performed in 78 skin wounds in rabbits that were treated with 2 mg ml-1and 10 mg ml-1 of T. aestivum and non-ionic cream for 21 days. After this period, it was evaluated the histology using picrosorius and Gomori’s trichrome staining. Statistical analysis was evaluated using T test (Graphpad) for cytotoxicity assay, Fischer test for the gomori trichrome test (Grahpad) and Kruskal-Wallis (Statistic 9.0) for picrosirius test. The in vitro test resulted in cytotoxicity observed at 2mg mL-1 whereas cells were viable at higher doses. On the other hand, it was observed that collagen formation of wounds was more uniform with this dose than with 10mg mL-1 extract in the in vivo study. Thus, we conclude that the 2mg mL-1 T. aestivum aqueous extract dose was more efficient in the in vivo wound healing study, despite its cytotoxic effects in vitro.


1962 ◽  
Vol 12 (3) ◽  
pp. 533-551 ◽  
Author(s):  
Russell Ross ◽  
Earl P. Benditt

The sequence encountered in healing skin wounds in scorbutic guinea pigs has been examined by methods of light and electron microscopy. Linear incisions in the skin of female guinea pigs fed a scorbutigenic diet were allowed to heal. The wounds were removed for examination at 1, 3, 5, 9, and 14 days after wounding. The fibroblasts of the scorbutic wounds differ from those of the controls in three major aspects. First, little collagen is present within the intercellular spaces, although small groups of individual collagen fibrils can be found adjacent to some of the fibroblasts; in addition, large amounts of somewhat fibrillar, poorly structured, dense matter are present throughout the extracellular regions. The second alteration consists of large aggregates of intracytoplasmic lipid deposits present within the majority of the fibroblasts. Third, the endoplasmic reticulum of the fibroblasts is altered in form from that of the controls. The profiles of the cisternae are round, non-continuous within the plane of section, and are less extensively developed than in the controls. An increased macrophagic activity of the histiocytes is also described. These changes are discussed in light of the available biochemical data associated with this abnormality of protein synthesis.


2015 ◽  
Vol 6 (2) ◽  
pp. 85-95 ◽  
Author(s):  
Mariya Valer’yevna Konstantinova ◽  
Nikolay Valentinovich Khaytsev ◽  
Aleftina Alekseevna Kravtsova ◽  
Lev Dmitrievich Balashov

Kin substitutes present a heterogenous group of substances that aid in temporary or permanent covering of wounds of various types. Although they can not replace surgical debridement or standard methods of treatment they proffer an alternative to standard methods of treatment whenever the latter are ineffective. Skin substitutes require less wound vascularization, they increase the wound’s cutaneous component, decrease or eliminate inhibitory factors, decrease inflammatory process and grant quick and safe wound closing. Mast cells besides regulating vascular reactions in trauma zone also boost immune, defensive and reparative processes in the wound. Stimulatory influence of mast cells upon fibrosis depend on activation of fibroblasts rather than direct collagen production by mast cells. Attention is focused at studies of autologous adult stem-cells’ stimulation in various organs and tissues as well as at intercellular matrix (ICM). ICM besides being cells’ fastening substrate also controls proliferation, differentiation, migration, apoptosis cells’ functions. Collagen, fibronectin, laminin, proteoglycanes, cytokines and chemokynes are important ICM components. Microcirculation plays a substantial role in wound healing process. Cultivated fibroblasts due to their ability for long-term synthesis of ICM components can effectively correct wound healing process. Allogenic fibroblasts can be successfully used as skin substitutes’ components in the treatment of skin wounds and burns. Unlike autologous fibroblasts the allogenic cells may be obtained in advance and freeze-stored in large quantities.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Polyana Cury Marinho ◽  
Rodrigo Neto-Ferreira ◽  
Jorge José de Carvalho

Capybara oil is commonly used for cutaneous wound healing in traditional South American medicine, although its beneficial effect has never been experimentally proven. The aim of this study was to investigate the effects of the topical application of capybara oil on skin wounds in Swiss mice. The following characteristics of the wounds were observed and evaluated: wound contraction and reepithelialization, the number of polymorphonuclear leukocytes and mast cells, the thickness of the neoepidermis, and the distribution of collagen and elastic fibers. Our study showed that oil extracted from subcutaneous capybara fat was beneficial for wound healing, indicating that capybara oil plays an important role in promoting tissue repair.


Antioxidants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 36 ◽  
Author(s):  
Paolo Governa ◽  
Gabriele Carullo ◽  
Marco Biagi ◽  
Vittoria Rago ◽  
Francesca Aiello

The healing of skin wounds and particularly chronic wounds, such as diabetic foot ulcers, is still a clinical emergency. Despite the many therapeutic tools that are available so far, none seems to be really effective and safe. In this context, we highlighted the renewed wound healing activity of honey, a viscous aromatic and sweet food, by way of in vitro wound-healing assays, using the HaCaT cell line. Specifically, we investigated five monofloral or multifloral honeys from different Calabrian provinces using them as such or extracted (by Amberlite® or n-hexane and ethyl acetate). The chemical composition of honeys was ascertained by 1H NMR spectroscopy and by the gas chromatography/mass spectrometry (GC/MS) method for volatile organic compounds (VOCs). Amongst the five tested honeys, BL1 and BL5 honeys showed the most promising healing properties. Pinocembrin, which was revealed in BL1 (multifloral) and BL5 (orange) honey samples, is a flavanol that is already known to possess interesting biological activities, including healing. This study aims to investigate how a traditional food such as honey, which is appreciated for its nutritional value and used in folk medicine, can be enhanced as an effective modern remedial to promote a multifaceted and safe healing activity for all skin wounds.


2021 ◽  
Vol 22 (5) ◽  
pp. 2385
Author(s):  
Ethan Strattan ◽  
Gerhard Carl Hildebrandt

Allogeneic hematopoietic stem cell transplantation (HSCT) is most commonly a treatment for inborn defects of hematopoiesis or acute leukemias. Widespread use of HSCT, a potentially curative therapy, is hampered by onset of graft-versus-host disease (GVHD), classified as either acute or chronic GVHD. While the pathology of acute GVHD is better understood, factors driving GVHD at the cellular and molecular level are less clear. Mast cells are an arm of the immune system that are known for atopic disease. However, studies have demonstrated that they can play important roles in tissue homeostasis and wound healing, and mast cell dysregulation can lead to fibrotic disease. Interestingly, in chronic GVHD, aberrant wound healing mechanisms lead to pathological fibrosis, but the cellular etiology driving this is not well-understood, although some studies have implicated mast cells. Given this novel role, we here review the literature for studies of mast cell involvement in the context of chronic GVHD. While there are few publications on this topic, the papers excellently characterized a niche for mast cells in chronic GVHD. These findings may be extended to other fibrosing diseases in order to better target mast cells or their mediators for treatment of fibrotic disease.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Zhang ◽  
Yongjun Zheng ◽  
Jimmy Lee ◽  
Jieyu Hua ◽  
Shilong Li ◽  
...  

AbstractEffective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair.


2021 ◽  
Vol 22 (4) ◽  
pp. 1538 ◽  
Author(s):  
Pietro Gentile ◽  
Simone Garcovich

The number of clinical trials evaluating adipose-derived mesenchymal stem cells (AD-MSCs), platelet-rich plasma (PRP), and biomaterials efficacy in regenerative plastic surgery has exponentially increased during the last ten years. AD-MSCs are easily accessible from various fat depots and show intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. AD-MSCs have been used in the treatment of soft tissue defects and chronic wounds, employed in conjunction with a fat grafting technique or with dermal substitute scaffolds and platelet-rich plasma. In this systematic review, an overview of the current knowledge on this topic has been provided, based on existing studies and the authors’ experience. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, PRP, and biomaterials used in soft tissue defects and chronic wounds. Of the 2136 articles initially identified, 422 articles focusing on regenerative strategies in wound healing were selected and, consequently, only 278 articles apparently related to AD-MSC, PRP, and biomaterials were initially assessed for eligibility. Of these, 85 articles were excluded as pre-clinical, experimental, and in vitro studies. For the above-mentioned reasons, 193 articles were selected; of this amount, 121 letters, expert opinions, commentary, and editorials were removed. The remaining 72 articles, strictly regarding the use of AD-MSCs, PRP, and biomaterials in chronic skin wounds and soft tissue defects, were analyzed. The studies included had to match predetermined criteria according to the patients, intervention, comparator, outcomes, and study design (PICOS) approach. The information analyzed highlights the safety and efficacy of AD-MSCs, PRP, and biomaterials on soft tissue defects and chronic wounds, without major side effects.


2019 ◽  
Vol 5 (1) ◽  
pp. eaav0216 ◽  
Author(s):  
Mohammad Arifuzzaman ◽  
Yuvon R. Mobley ◽  
Hae Woong Choi ◽  
Pradeep Bist ◽  
Cristina A. Salinas ◽  
...  

Mast cells (MCs) are strategically distributed at barrier sites and prestore various immunocyte-recruiting cytokines, making them ideal targets for selective activation to treat peripheral infections. Here, we report that topical treatment with mastoparan, a peptide MC activator (MCA), enhances clearance ofStaphylococcus aureusfrom infected mouse skins and accelerates healing of dermonecrotic lesions. Mastoparan functions by activating connective tissue MCs (CTMCs) via the MRGPRX2 (Mas-related G protein-coupled receptor member X2) receptor. Peripheral CTMC activation, in turn, enhances recruitment of bacteria-clearing neutrophils and wound-healing CD301b+dendritic cells. Consistent with MCs playing a master coordinating role, MC activation also augmented migration of various antigen-presenting dendritic cells to draining lymph nodes, leading to stronger protection against a second infection challenge. MCAs therefore orchestrate both the innate and adaptive immune arms, which could potentially be applied to combat peripheral infections by a broad range of pathogens.


Sign in / Sign up

Export Citation Format

Share Document