scholarly journals Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers.

1983 ◽  
Vol 97 (4) ◽  
pp. 1081-1088 ◽  
Author(s):  
J V Pardo ◽  
J D Siliciano ◽  
S W Craig

Immunofluorescent staining of bovine and avian cardiac tissue with affinity-purified antibody to chicken gizzard vinculin reveals two new sites of vinculin reactivity. First, vinculin is organized at the sarcolemma in a striking array of rib-like bands, or costameres. The costameres encircle the cardiac muscle cell perpendicular to the long axis of the fiber and overlie the I bands of the immediately subjacent sarcomeres. The second new site of vinculin reactivity is found in bovine cardiocytes at tubular invaginations of the plasma membrane. The frequency and location of these invaginations correspond to the known frequency and distribution of the transverse tubular system in bovine atrial, ventricular, and Purkinje fibers. We do not detect tubular invaginations that stain with antivinculin in avian cardiocytes and, in fact, a transverse tubular system has not been found in avian cardiac fibers. Apparent lateral Z-line attachments to the sarcolemma and its invaginations have been observed in cardiac muscle by electron microscopy in the same regions where we find vinculin. On the basis of these previous ultrastructural findings and our published evidence for a physical connection between costameres and the underlying myofibrils in skeletal muscle, we interpret the immunofluorescence data of this study to mean that, in cardiac muscle, vinculin is a component of an extensive system of lateral attachment of myofibrils to the plasma membrane and its invaginations.

1990 ◽  
Vol 240 (1297) ◽  
pp. 197-210 ◽  

Immunolabelling with a 5 nm gold probe was used to localize dystrophin at the ultrastructural level in human muscle. The primary antibody was monoclonal, raised against a segment (amino acids 1181-1388) from the rod domain of dystrophin. The antibody (Dy4/6D3) is specific for dystrophin and shows no immunoreactivity with any protein from mdx mouse muscle or from patients with a gene deletion spanning part of the molecule recognized by the antibody (Nicholson et al . 1989 a ; England et al . 1990). Using this antibody, labelling was almost entirely confined to a narrow 75 nm rim at the periphery of the muscle fibres. Histograms of the distance from the gold probe to the cytoplasmic face of the plasma membrane and of the distance between gold probes (nearest neighbour in a plane parallel with the plasma membrane) displayed modes at approximately 15 nm and 120 nm, respectively. The distribution of the probe was the same in longitudinal and transverse sections of the muscle. These observations suggest that the rod portion of the dystrophin mole­cule is normally arranged close to the cytoplasmic face of the plasma membrane and that the molecules form an interconnecting network. Labelling was not associated with the transverse tubular system.


1967 ◽  
Vol 33 (1) ◽  
pp. 103-129 ◽  
Author(s):  
Edward A. Johnson ◽  
Joachim R. Sommer

The structure of a small strand of rabbit heart muscle fibers (trabecula carnea), 30–80 µ in diameter, has been examined with light and electron microscopy. By establishing a correlation between the appearance of regions of close fiber contact in light and electron microscopy, the extent and distribution of regions of close apposition of fibers has been evaluated in approximately 200 µ length of a strand. The distribution of possible regions of resistive coupling between fibers has been approximated by a model system of cables. The theoretical linear electrical properties of such a system have been analyzed and the implications of the results of this analysis are discussed. Since this preparation is to be used for correlated studies of the electrical, mechanical, and cytochemical properties of cardiac muscle, a comprehensive study of the morphology of this preparation has been made. The muscle fibers in it are distinguished from those of the rabbit papillary muscle, in that they have no triads and have a kind of mitochondrion not found in papillary muscle. No evidence of a transverse tubular system was found, but junctions of cisternae of the sarcoplasmic reticulum and the sarcolemma, peripheral couplings, were present. The electrophysiological implications of the absence of transverse tubules are discussed. The cisternae of the couplings showed periodic tubular extensions toward the sarcolemma. A regularly spaced array of Z line-like material was observed, suggesting a possible mechanism for sarcomere growth.


1962 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
F. O. Simpson ◽  
S. J. Oertelis

An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers—plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.


1999 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Koichiro Kuwahara ◽  
Yoshihiko Saito ◽  
Ichiro Kishimoto ◽  
Masaki Harada ◽  
Ichiro Hamanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document