scholarly journals T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor.

1980 ◽  
Vol 151 (1) ◽  
pp. 69-80 ◽  
Author(s):  
M J Berendt ◽  
R J North

The results of this paper are consistent with the hypothesis that progressive growth of the Meth A fibrosarcoma evokes the generation of a T-cell-mediated mechanism of immunosuppression that prevents this highly immunogenic tumor from being rejected by its immunocompetent host. It was shown that it is possible to cause the regression of large, established Meth A tumors by intravenous infusion of tumor-sensitized T cells from immune donors, but only if the tumors are growing in T-cell-deficient recipients. It was also shown that the adoptive T-cell-mediated regression of tumors in such recipients can be prevented by prior infusion of splenic T cells from T-cell-intact, tumor-bearing donors. The results leave little doubt that the presence of suppressor T cells in T-cell-intact, tumor-bearing mice is responsible for the loss of an earlier generated state of concomitant immunity, and for the inability of intravenously infused, sensitized T cells to cause tumor regression. Because the presence of suppressor T cells generated in response to the Meth A did not suppress the capacity of Meth A-bearing mice to generate and express immunity against a tumor allograft, it is obvious that they were not in a state of generalized immunosuppression.

1988 ◽  
Vol 168 (6) ◽  
pp. 2193-2206 ◽  
Author(s):  
M Awwad ◽  
R J North

This study shows that intravenous injection of 1 mg of anti-L3T4 mAb (GK1.5) into thymectomized mice bearing the syngeneic L5178Y lymphoma results, after a delay of 2-3 d, in complete regression of this tumor and in long-term host survival. A flow cytofluorometric examination of the spleen cells of mAb-treated mice revealed that antibody treatment resulted in the elimination of greater than 98% of L3T4+ T cells, but had no effect on the Lyt-2+ T cells subset. Tumor regression was immunologically mediated, because L5178Y lymphoma cells were shown to be L3T4-, and regression of the tumor failed to occur in mice that had been lethally irradiated before anti-L3T4 mAb was given. Tumor regression was mediated by tumor-sensitized Lyt2+ T cells, as evidenced by the finding that treatment of tumor-bearing mice with anti-Lyt-2 mAb alone, or in combination with anti-L3T4 mAb, resulted in enhancement of tumor growth and a significant decrease in host survival time. Moreover, the spleens of mice whose tumors were undergoing regression in response to anti-L3T4 mAb treatment contained Lyt-2+ T cells capable, on passive transfer, of causing regression of a tumor in recipient mice. These results can be interpreted as showing that removal of tumor-induced L3T4+ suppressor T cells results in the release of Lyt-2+ effector T cells from suppression, and consequently in the generation of enough Lyt-2+ T cell-mediated immunity to cause tumor regression. This can only be achieved, however, if immunity to the tumor is mediated exclusively by Lyt-2+ T cells, as is the case for the L5178Y lymphoma. In the case of the P815 mastocytoma, treatment with anti-L3T4 mAb was without a therapeutic effect, and this was in keeping with the finding that immunity to this tumor is mediated by L3T4+, as well by Lyt-2+ T cells.


1983 ◽  
Vol 157 (5) ◽  
pp. 1448-1460 ◽  
Author(s):  
C D Mills ◽  
R J North

The results of this study with the P815 mastocytoma confirm the results of previous studies that showed that the passive transfer of tumor-sensitized T cells from immunized donors can cause the regression of tumors growing in T cell-deficient (TXB) recipients, but not in normal recipients. The key additional finding was that the expression of adoptive immunity against tumors growing in TXB recipients is immediately preceded by a substantial production of cytolytic T cells in the recipients' draining lymph node. On the other hand, failure of adoptive immunity to be expressed against tumors growing in normal recipients was associated with a cytolytic T cell response of much lower magnitude, and a similar low magnitude response was generated in TXB recipients infused with normal spleen cells and in tumor-bearing control mice. Because the passively transferred sensitized T cells possessed no cytolytic activity of their own, the results indicate that the 6-8-d delay before adoptive immunity is expressed represents the time needed for passively transferred helper or memory T cells to give rise to a cytolytic T cell response of sufficient magnitude to destroy the recipient's tumor. In support of this interpretation was the additional finding that inhibition of the expression of adoptive immunity by the passive transfer of suppressor T cells from tumor-bearing donors was associated with a substantially reduced cytolytic T cell response in the recipient's draining lymph node. The results serve to illustrate that interpretation of the results of adoptive immunization experiments requires a knowledge of the events that take place in the adoptively immunized recipient. They support the interpretation that suppressor T cells function in this model to "down-regulate" the production of cytolytic effector T cells.


1981 ◽  
Vol 154 (4) ◽  
pp. 1033-1042 ◽  
Author(s):  
E S Dye ◽  
R J North

Progressive growth of the P815 mastocytoma in semisyngeneic mice evokes the generation of a T cell-mediated mechanism of immunosuppression that inhibits the capacity of passively transferred, tumor-sensitized T cells from regressing this tumor in recipient mice. This conclusion is based on two findings: (a) that it is possible to demonstrate adoptive T cell-mediated regression of established tumors, but only if the tumors are growing in T cell-deficient recipients, and (b) that adoptive T cell-mediated regression of tumors in these recipients can be inhibited by the infusion of splenic T cells from T cell-intact, tumor-bearing donors. The results of additional experiments designed to measure the effect of decreasing the number of suppressor cells and the time that they are infused, relative immune cells, indicate that the function of suppressor cells in this model is to inhibit the replication of passively transferred immune T cells. The results obtained with the P815 mastocytoma are similar to those obtained previously with a chemically induced fibrosarcoma. They show, in addition, that passively transferred immune cells are capable of destroying already seeded metastases in T cell-deficient recipients.


1978 ◽  
Vol 148 (6) ◽  
pp. 1560-1569 ◽  
Author(s):  
M J Berendt ◽  
R J North ◽  
D P Kirstein

It was shown that of four syngeneic, murine tumors investigated, only those that evoked the generation of a state of concomitant anti-tumor immunity were susceptible to endotoxin-induced regression. Moreover, the temporal relationship between the generation of concomitant immunity and the onset of susceptibility to endotoxin-induced regression points to the likely possibility that tumor regression depends on the preceding acquisition of the specifically-sensitized, effector T cells that express concomitant immunity. It is suggested that endotoxin-induced hemorrhagic necrosis which invariably precedes tumor regression serves to create conditions inside the tumor that are conducive to the entry and the functioning of effector T cells. It is also suggested that tumor necrosis factor causes hemorrhagic necrosis rather than tumor regression.


1984 ◽  
Vol 159 (5) ◽  
pp. 1295-1311 ◽  
Author(s):  
R J North ◽  
I Bursuker

It was shown that the progressive growth of the immunogenic meth A fibrosarcoma in its semisyngeneic host results in the generation of concomitant immunity to the growth of a tumor implant. The generation of immunity occurred between days 6 and 9 of tumor growth and was associated with the generation of sensitized T cells that were capable, on passive transfer, of causing regression of a 3-d tumor in gamma-irradiated recipients. After day 9 of tumor growth, concomitant immunity and the T cells able to passively transfer it were progressively lost, and this was associated with the generation of splenic suppressor T cells able to suppress the expression of adoptive immunity against an established tumor in T cell-deficient ( TXB ) recipients. The T cells that passively transferred concomitant immunity were shown to be of the Ly-1-2+ phenotype, in contrast to the T cells that transferred suppression, which were shown with the same reagents to be Ly-1+2-. The results are consistent with the hypothesis that the progressive growth of an immunogenic tumor results in the generation of Ly-1-2+-sensitized effector T cells that fail to reach a number sufficient to destroy the tumor because their generation is down-regulated by tumor-induced Ly-1+2- suppressor T cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2579-2579
Author(s):  
Meghaan Walsh ◽  
Aviva C Krauss ◽  
Jessica PE Davis ◽  
Su Young Kim ◽  
Martin Guimond ◽  
...  

Abstract BACKGROUND: PT-100 is an aminoboronic dipeptide that competitively inhibits dipeptidyl peptidases. While PT-100 has no direct effect on tumor cells in vitro, it exhibits potent antitumor effects in vivo. We have shown that female C57BL/6 (B6) mice with MB49 tumors, which naturally express the male minor histocompatibility antigen complex (HY), are primed to HY, but the immune response is insufficient to control tumor growth. In this study, we used the well-characterized HY antigen system to examine the immunomodulatory effects of PT-100 during treatment-induced tumor regression. METHODS: B6 female mice were inoculated subcutaneously with MB49 (106 cells) on day 0 and treated daily with PT-100 by gavage. For re-challenge experiments mice received high dose MB49 (3×106 cells) three weeks after complete regression of primary tumors. IFN-g ELISPOT was used to measure HY antigen specific T cell responses in the spleen and lymph nodes (LNs) during tumor growth. For adoptive transfer experiments, T cells were magnetic-bead purified from LNs and spleens of tumor-bearing PT-100 treated, tumor-bearing sham treated, or naïve mice and injected intravenously into Rag1−/− recipients (1.2×106 cells) which were then inoculated with high dose MB49. T cells were depleted with monoclonal antibodies to CD4 and CD8. Dendritic cells (DCs) were depleted with diphtheria toxin (DT) in bone marrow chimeras expressing the DT receptor under the CD11c promoter. DC activation examined by flow cytometry. For vaccine experiments, HY-expressing DCs were cultured from male B6 bone marrow and injected intraperitoneally (1×105 cells). RESULTS: PT-100 treatment resulted in complete regression of MB49, even when limited to the first week (days 3–7) during tumor progression. Treatment started later than week 1 was insufficient to establish consistent, complete tumor regression. High-dose re-challenge of PT-100 treated mice resulted in initial growth followed by regression without additional PT-100. IFN-gELISPOT revealed a robust response against HY in spleens of controls on day 17. Interestingly, PT-100 treated mice had quantitatively similar priming, but the response peaked earlier (day 10), just prior to tumor regression. Purified T cells from PT-100 treated donors collected on day 17 mediated markedly enhanced tumor protection compared to recipients of T cells from sham treated tumor-bearing mice despite significantly more HY-reactive cells in the spleen and LNs of sham treated-tumor bearing mice by that time. T cell or DC depletion independently abrogated the anti-tumor effect of PT-100 and treatment with PT-100 increased CD80 and CD86 expression on LN DC populations in vivo. Although HY DC vaccination does not affect tumor growth, supplementation of the DC vaccine with PT-100 mediated a therapeutic effect resulting in regression of well-established tumors. CONCLUSIONS: PT-100 establishes a consistent and potent antitumor effect against MB49 dependent on T cells and DCs. Treatment results in a memory response that is protective against high dose MB49 re-challenge. PT-100-induced tumor regression is associated with enhanced early tumor priming, associated with increases in activated DCs. T cells from PT-100 treated mice elicit superior protection upon adoptive transfer compared to shams, despite quantitatively less tumor-primed T cells, suggesting the PT-100 antitumor effect may involve a qualitative difference in T cell function. PT-100 given as an adjuvant to a DC vaccine results in increased potency and regression of established tumors. Inhibition of dipeptidyl peptidases modulate naturally occurring anti-tumor immune responses and contribute to the generation of a therapeutic anti-cancer vaccine.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 7537-7537 ◽  
Author(s):  
Christopher Flowers ◽  
Iris Isufi ◽  
Alex Francisco Herrera ◽  
Craig Okada ◽  
Elizabeth H. Cull ◽  
...  

7537 Background: Follicular lymphoma (FL) is an incurable malignancy with patients (pts) ultimately relapsing following standard therapies. Active immunotherapy has the potential to induce life-long host anti-tumor immunity and disease control. G100 consists of glucopyranosyl lipid-A (GLA), a TLR-4 agonist in a specific formulation. Preclinically, G100 activates dendritic cells, T cells and NK cells, and triggers systemic anti-tumor immunity. In Merkel Cell carcinoma pts, G100 administered intratumorally (IT) induced tumor inflammation and responses including a CR after G100 alone. This is the first study of G100 IT in pts with NHL. Methods: Previously treated or naïve pts with FL with an injectable tumor site and distal sites of disease were eligible. In Part 1, G100 cohorts of 5 or 10µg were enrolled in a 3+3 design, followed by a large tumor ( > 4cm) cohort at 20µg. Pts received 6-9 doses of G100 IT ~qwk after radiation (RT, 2 Gy x2 doses) to the lesion. A 2nd course of G100 could be given without RT to an additional site. Results: As of 31Dec16, all 9 pts in Part 1 dose escalation (3 pts each at 5, 10, or 20 µg/dose) were evaluable for safety and efficacy. An additional 13 pts at 10µg/dose were included in the safety analysis only. No G100-related DLTs or SAEs were observed at any dose level. Of 22 safety pts, all G100 related AEs were grade 1/2 and none occurred in > 2 pts. Tumor biopsies following G100 demonstrated diffuse infiltration of CD8+ T cells in 5/5 pts and T cell repertoire analyses indicated an increased frequency of clonal tumor infiltrating lymphocytes (TILs). Best responses include: 4 PRs (45%), 3 SDs (33%) and 2 pending (22%). Of the 4 PR pts, tumor regression ranged 58-89% including up to 56% shrinkage of abscopal (distal) sites. Conclusions: G100 IT was safe, well-tolerated, induced CD8+ T cell infiltration and expansion of TIL clones. G100/RT treated and abscopal lesion regressions were observed signifying the induction or boosting of systemic anti-tumor immunity. The induction of immune responses, favorable safety profile and clinical activity indicate that G100 IT is an active agent that warrants further investigation. Part 2 enrollment continues with randomization to G100/RT ± pembrolizumab. Clinical trial information: NCT02501473.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14228-e14228 ◽  
Author(s):  
Chan Kim ◽  
Joo Hoon Kim ◽  
Jin Sung Kim ◽  
Hong Jae Chon ◽  
Joo-Hang Kim

e14228 Background: Kynurenine production by indoleamine 2,3-dioxygenase (IDO) is critical for tumor immune suppression through effector T cell anergy and regulatory T cell proliferation. This has led to the rapid development of IDO inhibitors for cancer immunotherapy. However, results from recent clinical trials have been disappointing and this is partly due to pathway redundancy. Tryptophan 2,3-dioxygenase (TDO), another important enzyme of the kynurenine pathway, plays a compensatory role in the absence of IDO activity. Therefore, we developed a dual inhibitor of IDO and TDO to achieve maximal inhibition of the kynurenine pathway and alleviate tumor immune suppression. Methods: Small-molecule inhibitors of IDO and TDO were synthesized and evaluated using in vitro cell-based assays. Pharmacokinetic and pharmacodynamic profiles were assessed for these inhibitors. Tumor-bearing mice were treated with CMG017 per os, either alone or in combination with immune checkpoint inhibitors (ICIs). The tumor microenvironment (TME) was assessed through histological, flow-cytometric, and Nanostring immune profiling analyses. Results: CMG017 suppressed kynurenine production more effectively than inhibitors targeting either IDO or TDO alone, in various human and murine cancer cell lines. Single administration of CMG017 showed favorable pharmacokinetic profiles compared with an IDO1 selective inhibitor. Repeated once-daily per os administration of CMG017 decreased kynurenine concentration in both tumors and plasma of tumor-bearing mice and delayed tumor growth without significant toxicity. CMG017 induced dramatic changes in immune-related genes in TME and enhanced intratumoral infiltration of CD8+ effector T cells. The anti-tumor activity of CMG017 was almost negated when T cells were depleted, indicating the importance of adaptive immunity for the in vivo efficacy of CMG017. Of note, combination immunotherapy of CMG017 with ICIs (anti-PD-1 and anti-CTLA-4) led to durable tumor regression and long-term overall survival. Mice with complete tumor regression were immune to tumor re-challenge, indicating the establishment of immunological memory. Conclusions: CMG017, a dual inhibitor of IDO and TDO, potently suppressed the kynurenine pathway and showed promising anti-cancer efficacy, with favorable pharmacologic profiles.


2021 ◽  
Author(s):  
Ioannis Morianos ◽  
Aikaterini Tsitsopoulou ◽  
Konstantinos Potaris ◽  
Dimitrios Valakos ◽  
Ourania Fari ◽  
...  

Abstract Background: Although tumor-infiltrating T cells represent a favorable prognostic marker for cancer patients, the majority of these cells are rendered with an exhausted phenotype. Hence, there is an unmet need to identify factors which can reverse this dysfunctional profile and restore their anti-tumorigenic potential. Activin-A is a pleiotropic cytokine, exerting a broad range of pro- or anti-inflammatory functions in different disease contexts, including allergic and autoimmune disorders and cancer. Given that activin-A exhibits a profound effect on CD4+ T cells in the airways and is elevated in lung cancer patients, we hypothesized that activin-A can effectively regulate anti-tumor immunity in lung cancer.Methods: To evaluate the effects of activin-A in the context of lung cancer, we utilized the OVA-expressing Lewis Lung Carcinoma mouse model as well as the B16F10 melanoma model of pulmonary metastases. The therapeutic potential of activin-A-treated lung tumor-infiltrating CD4+ T cells was evaluated in adoptive transfer experiments, using CD4-/--tumor bearing mice as recipients. In a reverse approach, we disrupted activin-A signaling on CD4+ T cells using an inducible model of CD4+ T cell-specific knockout of activin-A type I receptor. RNA-Sequencing analysis was performed to assess the transcriptional signature of these cells and the molecular mechanisms which mediate activin-A’s function. In a translational approach, we validated activin-A’s anti-tumorigenic properties using primary human tumor-infiltrating CD4+ T cells from lung cancer patients.Results: Administration of activin-A in lung tumor-bearing mice attenuated disease progression, an effect associated with heightened ratio of infiltrating effector to regulatory CD4+ T cells. Therapeutic transfer of lung tumor-infiltrating activin-A-treated CD4+ T cells, delayed tumor progression in CD4-/- recipients and enhanced T cell-mediated immunity. CD4+ T cells genetically unresponsive to activin-A, failed to elicit effective anti-tumor properties and displayed an exhausted molecular signature governed by the transcription factors Tox and Tox2. Of translational importance, treatment of activin-A on tumor-infiltrating CD4+ T cells from lung cancer patients augmented their immunostimulatory capacity towards autologous CD4+ and CD8+ T cells.Conclusions: In this study, we introduce activin-A as a novel immunomodulatory factor in the lung tumor microenvironment, which bestows exhausted CD4+ T cells with effector properties.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 25-26
Author(s):  
Anthos Christofides ◽  
Natalia M Tijaro-Ovalle ◽  
Halil-Ibrahim Aksoylar ◽  
Rinku Pal ◽  
Abdelrahman AA Mahmoud ◽  
...  

PD-1 is a T cell inhibitor for which blocking agents have achieved success as anti-cancer therapeutics. The current view is that cancer limits host immune responses by upregulating PD-L1 in the tumor microenvironment thereby causing PD-1 ligation and inactivation of CD8+ Teff cells. Recently, we determined that PD-1 alters the differentiation of myeloid progenitors during cancer-mediated emergency myelopoiesis. We found that PD-1 is expressed in granulocyte/macrophage progenitors (GMP), which accumulate during cancer-driven emergency myelopoiesis and give rise to myeloid-derived suppressor cells (MDSC) that promote tumor growth. In tumor-bearing mice with myeloid-specific PD-1 ablation, accumulation of GMP and MDSC was prevented, while output of effector myeloid cells was increased. PD-1-mediated T cell inactivation is attributed to the function of SHP-2 phosphatase, which is activated by recruitment to PD-1 cytoplasmic tail. Temporal activation of SHP-2 is critical for myeloid cell fate. Activating SHP-2 mutations prevent myeloid cell differentiation and lead to the accumulation of immature myelocytes and development of leukemia. To determine whether PD-1-mediated inhibition of anti-tumor immunity relies on SHP-2-mediated effects in T cells or myeloid cells, we generated mice with conditional targeting of the Ptpn11 gene (encoding for Shp-2) and selectively eliminated Shp-2 in T cells (Shp-2fl/flLckCre) or myeloid cells (Shp-2fl/flLysMCre). No significant difference in tumor growth was observed between control Shp2fl/fl and Shp-2fl/flLckCre mice bearing B16-F10 melanoma. Strikingly, Shp-2fl/flLysMCre mice had significantly diminished tumor growth that was not further decreased by anti-PD-1 antibody, in contrast to control Shp-2fl/fl mice in which anti-PD-1 treatment significantly reduced tumor size. To determine how Shp-2 ablation affected the properties of myeloid cells, we examined CD11b+Ly6ChiLy6G- monocytic (M-MDSC), CD11b+Ly6CloLy6G+ polymorphonuclear (PMN-MDSC), CD11b+F4/80+ tumor-associated macrophages (TAM) and CD11c+MHCII+ dendritic cells (DC). No quantitative differences were observed in these myeloid subsets in tumor bearing mice among the different groups. However, M-MDSC from Shp-2fl/flLysMCre mice had elevated expression of CD86 and IFNγ, consistent with effector differentiation. Suppression assays, by measuring antigen-specific responses of OTI transgenic T cells, showed significantly attenuated suppressor function of MDSC isolated from tumor-bearing Shp-2f/fLysMCre mice compared to control or Shp-2f/fLckCre mice. CD38 is a key mediator of MDSC-mediated immunosuppression. It is an ADP-ribosyl cyclase that has ectoenzyme and receptor functions, is induced early during differentiation of myeloid progenitors by retinoic acid receptor alpha (RARα) signaling, and mediates T cell immunosuppression. Because Shp-2 is involved in the differentiation of myeloid progenitors, we examined CD38 expression. We found that expression of CD38 was significantly reduced in MDSC from Shp-2fl/flLysMCre mice compared to control and Shp-2fl/flLckCre-tumor bearing mice. Since the suppressive potency of MDSC is decreased by autophagy, and SHP-2 has been implicated in regulating autophagy in cancer cells, we examined autophagy of MDSC in our system. Assessment of autophagy in ex vivo isolated MDSC, using Cyto-ID that stains the autophagosome membrane and indicates autophagic activity, showed enhanced autophagy in MDSC isolated from tumor bearing Shp-2fl/flLysMCre mice compared to control or Shp-2fl/flLckCre mice. Enhanced autophagy was also detected in bone marrow-derived MDSC from Shp-2fl/flLysMCre mice as determined by accumulation of LC3B-II and p62 during culture under conditions of starvation-induced stress. Consistent with the diminished MDSC suppressor function, myeloid cell-specific Shp-2 ablation in tumor-bearing mice induced an increase of CD8+ T cells showing an effector phenotype with improved functionality, despite preserved expression of PD-1 and Shp-2. Together these results indicate that inhibition of PD-1-mediated SHP-2 activation in myeloid progenitors, thereby preventing the accumulation of immature immunosuppressive MDSC and promoting the differentiation of effector myeloid cells, might be a previously unidentified mechanism by which PD-1 blockade mediates anti-tumor function. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document