scholarly journals Structural Similarities between Glutamate Receptor Channels and K+ Channels Examined by Scanning Mutagenesis

2001 ◽  
Vol 117 (4) ◽  
pp. 345-360 ◽  
Author(s):  
Victor A. Panchenko ◽  
Carla R. Glasser ◽  
Mark L. Mayer

The pores of glutamate receptors and K+ channels share sequence homology, suggesting a conserved secondary structure. Scanning mutagenesis with substitution of alanine and tryptophan in GluR6 channels was performed based on the structure of KcsA. Our assay used disruption of voltage-dependent polyamine block to test for changes in the packing of pore-forming regions. Alanine scanning from D567 to R603 revealed reduced rectification resulting from channel block in two regions. A periodic pattern from F575 to M589 aligned with the pore helix in KcsA, whereas a cluster of sensitive positions around Q590, a site regulated by RNA editing, mapped to the selectivity filter in KcsA. Tryptophan scanning from D567 to R603 revealed similar patterns, but with a complete disruption of spermine block for 7 out of the 37 positions and a pM dissociation constant for Q590W. Molecular modeling with KcsA coordinates showed that GluR6 pore helix mutants disrupting polyamine block pack against M1 and M2, and are not exposed in the ion channel pore. In the selectivity filter, tryptophan creates an aromatic cage consistent with the pM dissociation constant for Q590W. A scan with glutamate substitution was used to map the cytoplasmic entrance to the pore based on charge neutralization experiments, which established that E594 was uniquely required for high affinity polyamine block. In E594Q mutants, introduction of glutamate at positions S593–L600 restored polyamine block at positions corresponding to surface-exposed residues in KcsA. Our results reinforce proposals that the pore region of glutamate receptors contains a helix and pore loop analogous to that found in K+ channels. At the cytoplasmic entrance of the channel, a negatively charged amino acid, located in an extended loop with solvent-exposed side chains, is required for high affinity polyamine block and probably attracts cations via a through space electrostatic mechanism.

1998 ◽  
Vol 111 (2) ◽  
pp. 363-379 ◽  
Author(s):  
Izumi Sugihara

Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3).


2003 ◽  
Vol 122 (5) ◽  
pp. 485-500 ◽  
Author(s):  
Donglin Guo ◽  
Zhe Lu

Rectification of macroscopic current through inward-rectifier K+ (Kir) channels reflects strong voltage dependence of channel block by intracellular cations such as polyamines. The voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field, which accompanies the binding–unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for high-affinity binding of blockers. D172 appears to be located somewhat internal to the narrow K+ selectivity filter, whereas E224 and E299 form a ring at a more intracellular site. Using a series of alkyl-bis-amines of varying length as calibration, we investigated how the acidic residues in IRK1 interact with amine groups in the natural polyamines (putrescine, spermidine, and spermine) that cause rectification in cells. To block the pore, the leading amine of bis-amines of increasing length penetrates ever deeper into the pore toward D172, while the trailing amine in every bis-amine binds near a more intracellular site and interacts with E224 and E299. The leading amine in nonamethylene-bis-amine (bis-C9) makes the closest approach to D172, displacing the maximal number of K+ ions and exhibiting the strongest voltage dependence. Cells do not synthesize bis-amines longer than putrescine (bis-C4) but generate the polyamines spermidine and spermine by attaching an amino-propyl group to one or both ends of putrescine. Voltage dependence of channel block by the tetra-amine spermine is comparable to that of block by the bis-amines bis-C9 (shorter) or bis-C12 (equally long), but spermine binds to IRK1 with much higher affinity than either bis-amine does. Thus, counterintuitively, the multiple amines in spermine primarily confer the high affinity but not the strong voltage dependence of channel block. Tetravalent spermine achieves a stronger interaction with the pore by effectively behaving like a pair of tethered divalent cations, two amine groups in its leading half interacting primarily with D172, whereas the other two in the trailing half interact primarily with E224 and E299. Thus, nature has optimized not only the blocker but also, in a complementary manner, the channel for producing rapid, high-affinity, and strongly voltage-dependent channel block, giving rise to exceedingly sharp rectification.


2009 ◽  
Vol 134 (2) ◽  
pp. 151-164 ◽  
Author(s):  
Juan Ramón Martínez-François ◽  
Yanping Xu ◽  
Zhe Lu

Activity of cyclic nucleotide–gated (CNG) cation channels underlies signal transduction in vertebrate visual receptors. These highly specialized receptor channels open when they bind cyclic GMP (cGMP). Here, we find that certain mutations restricted to the region around the ion selectivity filter render the channels essentially fully voltage gated, in such a manner that the channels remain mostly closed at physiological voltages, even in the presence of saturating concentrations of cGMP. This voltage-dependent gating resembles the selectivity filter-based mechanism seen in KcsA K+ channels, not the S4-based mechanism of voltage-gated K+ channels. Mutations that render CNG channels gated by voltage loosen the attachment of the selectivity filter to its surrounding structure, thereby shifting the channel's gating equilibrium toward closed conformations. Significant pore opening in mutant channels occurs only when positive voltages drive the pore from a low-probability open conformation toward a second open conformation to increase the channels' open probability. Thus, the structure surrounding the selectivity filter has evolved to (nearly completely) suppress the expression of inherent voltage-dependent gating of CNGA1, ensuring that the binding of cGMP by itself suffices to open the channels at physiological voltages.


2003 ◽  
Vol 98 (5) ◽  
pp. 1139-1146 ◽  
Author(s):  
Fang Xu ◽  
Zayra Garavito-Aguilar ◽  
Esperanza Recio-Pinto ◽  
Jin Zhang ◽  
Thomas J. J. Blanck

Background Local anesthetics (LAs) are known to inhibit voltage-dependent Na+ channels, as well as K+ and Ca2+ channels, but with lower potency. Since cellular excitability and responsiveness are largely determined by intracellular Ca2+ availability, sites along the Ca2+ signaling pathways may be targets of LAs. This study was aimed to investigate the LA effects on depolarization and receptor-mediated intracellular Ca2+ changes and to examine the role of Na+ and K+ channels in such functional responses. Methods Effects of bupivacaine, ropivacaine, mepivacaine, and lidocaine (0.1-2.3 mm) on evoked [Ca2+](i) transients were investigated in neuronal SH-SY5Y cell suspensions using Fura-2 as the intracellular Ca2+ indicator. Potassium chloride (KCl, 100 mm) and carbachol (1 mm) were individually or sequentially applied to evoke increases in intracellular Ca2+. Coapplication of LA and Na+/K+ channel blockers was used to evaluate the role of Na+ and K+ channels in the LA effect on the evoked [Ca2+](i) transients. Results All four LAs concentration-dependently inhibited both KCl- and carbachol-evoked [Ca2+](i) transients with the potency order bupivacaine > ropivacaine > lidocaine >/= mepivacaine. The carbachol-evoked [Ca2+](i) transients were more sensitive to LAs without than with a KCl prestimulation, whereas the LA-effect on the KCl-evoked [Ca2+](i) transients was not uniformly affected by a carbachol prestimulation. Na+ channel blockade did not alter the evoked [Ca2+](i) transients with or without a LA. In the absence of LA, K+ channel blockade increased the KCl-, but decreased the carbachol-evoked [Ca2+](i) transients. A coapplication of LA and K+ channel blocker resulted in larger inhibition of both KCl- and carbachol-evoked [Ca2+](i) transients than by LA alone. Conclusions Different and overlapping sites of action of LAs are involved in inhibiting the KCl- and carbachol-evoked [Ca2+](i) transients, including voltage-dependent Ca2+ channels, a site associated with the caffeine-sensitive Ca2+ store and a possible site associated with the IP(3)-sensitive Ca2+ store, and a site in the muscarinic pathway. K+ channels, but not Na+ channels, seem to modulate the evoked [Ca2+](i) transients, as well as the LA-effects on such responses.


2005 ◽  
Vol 125 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Jill Thompson ◽  
Ted Begenisich

We have examined the voltage dependence of external TEA block of Shaker K+ channels over a range of internal K+ concentrations from 2 to 135 mM. We found that the concentration dependence of external TEA block in low internal K+ solutions could not be described by a single TEA binding affinity. The deviation from a single TEA binding isotherm was increased at more depolarized membrane voltages. The data were well described by a two-component binding scheme representing two, relatively stable populations of conducting channels that differ in their affinity for external TEA. The relative proportion of these two populations was not much affected by membrane voltage but did depend on the internal K+ concentration. Low internal K+ promoted an increase in the fraction of channels with a low TEA affinity. The voltage dependence of the apparent high-affinity TEA binding constant depended on the internal K+ concentration, becoming almost voltage independent in 5 mM. The K+ sensitivity of these low- and high-affinity TEA states suggests that they may represent one- and two-ion occupancy states of the selectivity filter, consistent with recent crystallographic results from the bacterial KcsA K+ channel. We therefore analyzed these data in terms of such a model and found a large (almost 14-fold) difference between the intrinsic TEA affinity of the one-ion and two-ion modes. According to this analysis, the single ion in the one-ion mode (at 0 mV) prefers the inner end of the selectivity filter twofold more than the outer end. This distribution does not change with internal K+. The two ions in the two-ion mode prefer to occupy the inner end of the selectivity filter at low K+, but high internal K+ promotes increased occupancy of the outer sites. Our analysis further suggests that the four K+ sites in the selectivity filter are spaced between 20 and 25% of the membrane electric field.


2013 ◽  
Vol 104 (2) ◽  
pp. 196a
Author(s):  
David J. Posson ◽  
Jason G. McCoy ◽  
Crina M. Nimigean

2004 ◽  
Vol 124 (4) ◽  
pp. 301-317 ◽  
Author(s):  
Rafael E. García-Ferreiro ◽  
Daniel Kerschensteiner ◽  
Felix Major ◽  
Francisco Monje ◽  
Walter Stühmer ◽  
...  

Ether à go-go (Eag; KV10.1) voltage-gated K+ channels have been detected in cancer cell lines of diverse origin and shown to influence their rate of proliferation. The tricyclic antidepressant imipramine and the antihistamine astemizole inhibit the current through Eag1 channels and reduce the proliferation of cancer cells. Here we describe the mechanism by which both drugs block human Eag1 (hEag1) channels. Even if both drugs differ in their affinity for hEag1 channels (IC50s are ∼2 μM for imipramine and ∼200 nM for astemizole) and in their blocking kinetics, both drugs permeate the membrane and inhibit the hEag1 current by selectively binding to open channels. Furthermore, both drugs are weak bases and the IC50s depend on both internal an external pH, suggesting that both substances cross the membrane in their uncharged form and act from inside the cell in their charged forms. Accordingly, the block by imipramine is voltage dependent and antagonized by intracellular TEA, consistent with imipramine binding in its charged form to a site located close to the inner end of the selectivity filter. Using inside- and outside-out patch recordings, we found that a permanently charged, quaternary derivative of imipramine (N-methyl-imipramine) only blocks channels from the intracellular side of the membrane. In contrast, the block by astemizole is voltage independent. However, as astemizole competes with imipramine and intracellular TEA for binding to the channel, it is proposed to interact with an overlapping intracellular binding site. The significance of these findings, in the context of structure–function of channels of the eag family is discussed.


2021 ◽  
Vol 153 (9) ◽  
Author(s):  
Jing Li ◽  
Rong Shen ◽  
Ahmed Rohaim ◽  
Ramon Mendoza Uriarte ◽  
Mikolai Fajer ◽  
...  

C-type inactivation is a time-dependent process of great physiological significance that is observed in a large class of K+ channels. Experimental and computational studies of the pH-activated KcsA channel show that the functional C-type inactivated state, for this channel, is associated with a structural constriction of the selectivity filter at the level of the central glycine residue in the signature sequence, TTV(G)YGD. The structural constriction is allosterically promoted by the wide opening of the intracellular activation gate. However, whether this is a universal mechanism for C-type inactivation has not been established with certainty because similar constricted structures have not been observed for other K+ channels. Seeking to ascertain the general plausibility of the constricted filter conformation, molecular dynamics simulations of a homology model of the pore domain of the voltage-gated potassium channel Shaker were performed. Simulations performed with an open intracellular gate spontaneously resulted in a stable constricted-like filter conformation, providing a plausible nonconductive state responsible for C-type inactivation in the Shaker channel. While there are broad similarities with the constricted structure of KcsA, the hypothetical constricted-like conformation of Shaker also displays some subtle differences. Interestingly, those are recapitulated by the Shaker-like E71V KcsA mutant, suggesting that the residue at this position along the pore helix plays a pivotal role in determining the C-type inactivation behavior. Free energy landscape calculations show that the conductive-to-constricted transition in Shaker is allosterically controlled by the degree of opening of the intracellular activation gate, as observed with the KcsA channel. The behavior of the classic inactivating W434F Shaker mutant is also characterized from a 10-μs MD simulation, revealing that the selectivity filter spontaneously adopts a nonconductive conformation that is constricted at the level of the second glycine in the signature sequence, TTVGY(G)D.


2003 ◽  
Vol 122 (2) ◽  
pp. 239-246 ◽  
Author(s):  
Jill Thompson ◽  
Ted Begenisich

Recent molecular dynamic simulations and electrostatic calculations suggested that the external TEA binding site in K+ channels is outside the membrane electric field. However, it has been known for some time that external TEA block of Shaker K+ channels is voltage dependent. To reconcile these two results, we reexamined the voltage dependence of block of Shaker K+ channels by external TEA. We found that the voltage dependence of TEA block all but disappeared in solutions in which K+ ions were replaced by Rb+. These and other results with various concentrations of internal K+ and Rb+ ions suggest that the external TEA binding site is not within the membrane electric field and that the voltage dependence of TEA block in K+ solutions arises through a coupling with the movement of K+ ions through part of the membrane electric field. Our results suggest that external TEA block is coupled to two opposing voltage-dependent movements of K+ ions in the pore: (a) an inward shift of the average position of ions in the selectivity filter equivalent to a single ion moving ∼37% into the pore from the external surface; and (b) a movement of internal K+ ions into a vestibule binding site located ∼13% into the membrane electric field measured from the internal surface. The minimal voltage dependence of external TEA block in Rb+ solutions results from a minimal occupancy of the vestibule site by Rb+ ions and because the energy profile of the selectivity filter favors a more inward distribution of Rb+ occupancy.


2010 ◽  
Vol 136 (5) ◽  
pp. 569-579 ◽  
Author(s):  
Andrew S. Thomson ◽  
Brad S. Rothberg

Voltage-dependent K+ channels can undergo a gating process known as C-type inactivation, which involves entry into a nonconducting state through conformational changes near the channel’s selectivity filter. C-type inactivation may involve movements of transmembrane voltage sensor domains, although the mechanisms underlying this form of inactivation may be heterogeneous and are often unclear. Here, we report on a form of voltage-dependent inactivation gating observed in MthK, a prokaryotic K+ channel that lacks a canonical voltage sensor and may thus provide a reduced system to inform on mechanism. In single-channel recordings, we observe that Po decreases with depolarization, with a half-maximal voltage of 96 ± 3 mV. This gating is kinetically distinct from blockade by internal Ca2+ or Ba2+, suggesting that it may arise from an intrinsic inactivation mechanism. Inactivation gating was shifted toward more positive voltages by increasing external [K+] (47 mV per 10-fold increase in [K+]), suggesting that K+ binding at the extracellular side of the channel stabilizes the open-conductive state. The open-conductive state was stabilized by other external cations, and selectivity of the stabilizing site followed the sequence: K+ ≈ Rb+ > Cs+ > Na+ > Li+ ≈ NMG+. Selectivity of the stabilizing site is weaker than that of sites that determine permeability of these ions, suggesting that the site may lie toward the external end of the MthK selectivity filter. We could describe MthK gating over a wide range of positive voltages and external [K+] using kinetic schemes in which the open-conductive state is stabilized by K+ binding to a site that is not deep within the electric field, with the voltage dependence of inactivation arising from both voltage-dependent K+ dissociation and transitions between nonconducting (inactivated) states. These results provide a quantitative working hypothesis for voltage-dependent, K+-sensitive inactivation gating, a property that may be common to other K+ channels.


Sign in / Sign up

Export Citation Format

Share Document