scholarly journals A new solar spectrum in the extreme ultraviolet.

1959 ◽  
Vol 64 ◽  
pp. 133
Author(s):  
R. R. Tousey ◽  
J. D. Purcell ◽  
D. M. Packer ◽  
W. R. Hunter
2021 ◽  
Author(s):  
Martin Snow ◽  
Stephane Beland ◽  
Odele Coddington ◽  
Steven Penton ◽  
Don Woodraska

<p>The GOES-R series of satellites includes a redesigned instrument for solar spectral irradiance: the Extreme ultraviolet and X-ray Irradiance Sensor (EXIS).  Our team will be using a high-cadence broadband visible light diode to construct a proxy for Total Solar Irradiance (TSI).  This will have two advantages over the existing TSI measurements:  measurements are taken at 4 Hz, so the cadence of our TSI proxy is likely faster than any existing applications, and the observations are taken from geostationary orbit, so the time series of measurements is virtually uninterrupted.  Calibration of the diode measurements will still rely on the standard TSI composites.  </p><p>The other measurement from EXIS that will be used is the Magnesium II core-to-wing ratio.  The MgII index is a proxy for chromospheric activity, and is measured by EXIS every 3 seconds.  The combination of the two proxies can be used to generate a model of the full solar spectrum similar to the NRLSSI2 empirical model.</p><p>We are in the first year of a three-year grant to develop the TSI proxy and the SSI model, so only very preliminary findings will be discussed in this presentation.</p>


1996 ◽  
Vol 152 ◽  
pp. 465-470
Author(s):  
B.C. Edwards ◽  
J.J. Bloch ◽  
D. Roussel-Dupré ◽  
T.E. Pfafman ◽  
Sean Ryan

The ALEXIS small satellite was designed as a large area monitor operating at extreme ultraviolet wavelengths (130 − 190 Å). At these energies, the moon is the brightest object in the night sky and was the first source identified in the ALEXIS data. Due to the design of ALEXIS and the lunar orbit, the moon is observed for two weeks of every month. Since lunar emissions in the extreme ultraviolet are primarily reflected solar radiation these observations may be useful as a solar monitor in the extreme ultraviolet. The data show distinct temporal and spectral variations indicating similar changes in the solar spectrum. We will present a preliminary dataset of lunar observations and discussions covering the variations observed and how they relate to the solar spectrum.


1978 ◽  
Vol 223 ◽  
pp. L51 ◽  
Author(s):  
J.-D. F. Bartoe ◽  
G. E. Brueckner ◽  
G. D. Sandlin ◽  
M. E. Vanhooster ◽  
C. Jordan

The present state of knowledge of the Sun’s extreme ultraviolet spectrum is reviewed, and areas for future work are indicated. Recent extreme ultraviolet spectroheliograms, including one that shows an importance 2N flare, are discussed.


1972 ◽  
Vol 14 ◽  
pp. 612-637
Author(s):  
R. W. Noyes ◽  
G. L. Withbroe

The extreme ultraviolet (EUV) solar spectrum is considered in this review to cover a decade in wavelength from about 300 Å to about 3000 Å. The lower end is close to the practical limit of normal-incidence optics, and the upper end is the approximate limit of visibility from Earth’s surface. The solar plasma that gives rise to emission within this interval is very complex and covers a huge range of physical conditions. Temperatures range from about 4 × 103 K (the temperature minimum in the low chromosphere, observed in the 1600 Å continuum) to about 4 × 106 K. (corresponding to emission of the FeXVI doublet at 335 and 361 Å). The density of the emitting plasma ranges from 1015 cm-3 in the upper photosphere to 108 cm-3 in the quiet corona. Major types of energy transport and deposition within the plasma include not only radiation, but also acoustic waves, magnetohydrodynamic waves, thermal conduction, and convective flow. Magnetic energy often completely controls detailed structure and energy balances within the plasma. Inhomogeneities are not a small perturbation on the overall structure of the plasma, but rather may completely dominate that structure. Extreme departures from local thermodynamic equilibrium (LTE) are the rule rather than the exception. (It is interesting to contrast this complex situation with that seen in the next wavelength decade, from 3000 Å to 3 μ, which includes the visible spectrum. With the exception of a few strong chromospheric lines, this radiation emerges from a comparatively isothermal (5000 K<T<6000 K), horizontally homogeneous, atmosphere in hydrostatic and radiative equilibrium, in which LTE is the rule rather than the exception.)


2015 ◽  
Vol 6 (1) ◽  
pp. 3-22 ◽  
Author(s):  
G. Schmidtke

Abstract. In the physics of the upper atmosphere the solar extreme ultraviolet (EUV) radiation plays a dominant role controlling most of the thermospheric/ionospheric (T/I) processes. Since this part of the solar spectrum is absorbed in the thermosphere, platforms to measure the EUV fluxes became only available with the development of rockets reaching altitude levels exceeding 80 km. With the availability of V2 rockets used in space research, recording of EUV spectra started in 1946 using photographic films. The development of pointing devices to accurately orient the spectrographs toward the sun initiated intense activities in solar–terrestrial research. The application of photoelectric recording technology enabled the scientists placing EUV spectrometers aboard satellites observing qualitatively strong variability of the solar EUV irradiance on short-, medium-, and long-term scales. However, as more measurements were performed more radiometric EUV data diverged due to the inherent degradation of the EUV instruments with time. Also, continuous recording of the EUV energy input to the T/I system was not achieved. It is only at the end of the last century that there was progress made in solving the serious problem of degradation enabling to monitore solar EUV fluxes with sufficient radiometric accuracy. The data sets available allow composing the data available to the first set of EUV data covering a period of 11 years for the first time. Based on the sophisticated instrumentation verified in space, future EUV measurements of the solar spectral irradiance (SSI) are promising accuracy levels of about 5% and less. With added low-cost equipment, real-time measurements will allow providing data needed in ionospheric modeling, e.g., for correcting propagation delays of navigation signals from space to earth. Adding EUV airglow and auroral emission monitoring by airglow cameras, the impact of space weather on the terrestrial T/I system can be studied with a spectral terrestrial irradiance camera (STI-Cam) and also be used investigating real-time space weather effects and deriving more detailed correction procedures for the evaluation of Global Navigation Satellite System (GNSS) signals. Progress in physics goes with achieving higher accuracy in measurements. This review historically guides the reader on the ways of exploring the impact of the variable solar radiation in the extreme ultraviolet spectral region on our upper atmosphere in the altitude regime from 80 to 1000 km.


Sign in / Sign up

Export Citation Format

Share Document