On the Accuracy of the Signal‐to‐Noise Estimates Obtained with the Exposure‐Time Calculator of the Wide Field Planetary Camera 2 on Board theHubble Space Telescope

2002 ◽  
Vol 114 (797) ◽  
pp. 770-779 ◽  
Author(s):  
Gianluca Li Causi ◽  
Guido De Marchi ◽  
Francesco Paresce
1988 ◽  
Vol 132 ◽  
pp. 35-38
Author(s):  
Dennis C. Ebbets ◽  
Sara R. Heap ◽  
Don J. Lindler

The G-HRS is one of four axial scientific instruments which will fly aboard the Hubble Space Telescope (ref 1,2). It will produce spectroscopic observations in the 1050 A ≤ λ ≤ 3300 A region with greater spectral, spatial and temporal resolution than has been possible with previous space-based instruments. Five first order diffraction gratings and one Echelle provide three modes of spectroscopic operation with resolving powers of R = λ/ΔΔ = 2000, 20000 and 90000. Two magnetically focused, pulse-counting digicon detectors, which differ only in the nature of their photocathodes, produce data whose photometric quality is usually determined by statistical noise in the signal (ref 3). Under ideal circumstances the signal to noise ratio increases as the square root of the exposure time. For some observations detector dark count, instrumental scattered light or granularity in the pixel to pixel sensitivity will cause additional noise. The signal to noise ratio of the net spectrum will then depend on several parameters, and will increase more slowly with exposure time. We have analyzed data from the ground based calibration programs, and have developed a theoretical model of the HRS performance (ref 4). Our results allow observing and data reduction strategies to be optimized when factors other than photon statistics influence the photometric quality of the data.


2014 ◽  
Vol 785 (2) ◽  
pp. 148 ◽  
Author(s):  
Sukrit Ranjan ◽  
David Charbonneau ◽  
Jean-Michel Désert ◽  
Nikku Madhusudhan ◽  
Drake Deming ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A132 ◽  
Author(s):  
B. W. Holwerda ◽  
J. S. Bridge ◽  
R. Ryan ◽  
M. A. Kenworthy ◽  
N. Pirzkal ◽  
...  

Aims. We aim to evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the Euclid mission, and the WFIRST telescope. Methods. We used the SPLAT SPEX/ISPEX spectroscopic library to map out the colors of the M-, L-, and T-type dwarfs. We have identified which color–color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluated each observatory separately as well as the narrow-field (HST and JWST) and wide-field (Euclid and WFIRST) combinations. Results. The Euclid filters perform equally well as HST wide filters in discriminating between broad types of brown dwarfs. WFIRST performs similarly well, despite a wider selection of filters. However, subtyping with any combination of Euclid and WFIRST observations remains uncertain due to the lack of medium, or narrow-band filters. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect brown dwarfs its imaging surveys. Conclusions. The HST filters used in high-redshift searches are close to optimal to identify broad stellar type. However, the addition of F127M to the commonly used broad filter sets would allow for unambiguous subtyping. An improvement over HST is one of two broad and medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates very well between subtypes.


2004 ◽  
Author(s):  
Jennifer A. Turner-Valle ◽  
Joseph Sullivan ◽  
John E. Mentzell ◽  
Robert A. Woodruff

2010 ◽  
Vol 9 (4) ◽  
pp. 265-271 ◽  
Author(s):  
W.B. Sparks ◽  
M. McGrath ◽  
K. Hand ◽  
H.C. Ford ◽  
P. Geissler ◽  
...  

AbstractEuropa is a prime target for astrobiology and has been prioritized as the next target for a National Aeronautics and Space Administration flagship mission. It is important, therefore, that we advance our understanding of Europa, its ocean and physical environment as much as possible. Here, we describe observations of Europa obtained during its orbital eclipse by Jupiter using the Hubble Space Telescope. We obtained Advanced Camera for Surveys Solar Blind Channel far ultraviolet low-resolution spectra that show oxygen line emission both in and out of eclipse. We also used the Wide-Field and Planetary Camera-2 and searched for broad-band optical emission from fluorescence of the surface material, arising from the very high level of incident energetic particle radiation on ices and potentially organic substances. The high-energy particle radiation at the surface of Europa is extremely intense and is responsible for the production of a tenuous oxygen atmosphere and associated FUV line emission. Approximately 50% of the oxygen emission lasts at least a few hours into the eclipse. We discuss the detection limits of the optical emission, which allow us to estimate the fraction of incident energy reradiated at optical wavelengths, through electron-excited emission, Cherenkov radiation in the ice and fluorescent processes.


1983 ◽  
Vol 62 ◽  
pp. 246-253
Author(s):  
W. A. Baum

Although the Space Telescope Wide-Field/Planetary Camera is not primarily an astrometric instrument, it is expected to have some astrometric capability. Moreover, one of its possible astrometric applications is of unusually high scientific importance, namely, an attempt to detect the presence of planets around nearby stars. Let me therefore adopt that application as an example for discussing the anticipated astrometric performance of the camera system. It will be expeditious to make use of some diagrams that I have presented previously elsewhere, so part of the story may sound familiar (Baum 1979a, 1979b, 1980a, 1980b; Baum, Thomsen, and Kreidl 1981).


2020 ◽  
Vol 495 (1) ◽  
pp. 962-970
Author(s):  
J Chouqar ◽  
Z Benkhaldoun ◽  
A Jabiri ◽  
J Lustig-Yaeger ◽  
A Soubkiou ◽  
...  

ABSTRACT We investigate the potential for the James Webb Space Telescope (JWST) to detect and characterize the atmospheres of the sub-Neptunian exoplanets in the TOI-270 system. Sub-Neptunes are considered more likely to be water worlds than gas dwarfs. We model their atmospheres using three atmospheric compositions – two examples of hydrogen-dominated atmospheres and a water-dominated atmosphere. We then simulate the infrared transmission spectra of these atmospheres for JWST instrument modes optimized for transit observation of exoplanet atmospheres: NIRISS, NIRSpec, and MIRI. We then predict the observability of each exoplanet’s atmosphere. TOI-270c and d are excellent targets for detecting atmospheres with JWST transmission spectroscopy, requiring only 1 transit observation with NIRISS, NIRSpec, and MIRI; higher signal-to-noise ratio can be obtained for a clear H-rich atmosphere. Fewer than three transits with NIRISS and NIRSpec may be enough to reveal molecular features. Water-dominated atmospheres require more transits. Water spectral features in water-dominated atmospheres may be detectable with NIRISS in two or three transits. We find that the detection of spectral features in a cloudy, H-rich atmosphere does not require integrations as long as those required for the water-dominated atmosphere, which is consistent with the differences in atmospheric mean molecular weight. TOI-270c and d could be prime targets for JWST transit observations of sub-Neptune atmospheres. These results provide useful predictions for observers who may propose to use JWST to detect and characterize the TOI-270 planet atmospheres.


2009 ◽  
Vol 42 (13) ◽  
pp. 135103 ◽  
Author(s):  
J McGinty ◽  
J Requejo-Isidro ◽  
I Munro ◽  
C B Talbot ◽  
P A Kellett ◽  
...  

1994 ◽  
Vol 107 ◽  
pp. 1904 ◽  
Author(s):  
Andrew C. Phillips ◽  
Duncan A. Forbes ◽  
Matthew A. Bershady ◽  
Garth D. Illingworth ◽  
David C. Koo

Sign in / Sign up

Export Citation Format

Share Document