Seasonal Phenotypic Flexibility of Body Mass, Organ Masses, and Tissue Oxidative Capacity and Their Relationship to Resting Metabolic Rate in Chinese Bulbuls

2014 ◽  
Vol 87 (3) ◽  
pp. 432-444 ◽  
Author(s):  
Wei-Hong Zheng ◽  
Jin-Song Liu ◽  
David L. Swanson
2010 ◽  
Vol 57 (3-4) ◽  
pp. 221-227 ◽  
Author(s):  
Katarina Melzer ◽  
Yves Schutz ◽  
Nina Soehnchen ◽  
Veronique Othenin Girard ◽  
Begona Martinez de Tejada ◽  
...  

2019 ◽  
Vol 72 (9-10) ◽  
pp. 272-279
Author(s):  
Danijel Slavic ◽  
Dea Karaba-Jakovljevic ◽  
Andrea Zubnar ◽  
Borislav Tapavicki ◽  
Tijana Aleksandric ◽  
...  

Introduction. The difference between 24-hour daily energy intake and total daily energy expenditure determines whether we lose or gain weight. The resting metabolic rate is the major component of daily energy expenditure, which depends on many different factors, but also on the level of physical activity. The aim of the study was to determine anthropometric and metabolic parameters of athletes engaged in different types of training, to compare obtained results and to examine whether there are statistically significant differences among them. Material and Methods. The study included a total of 42 young male athletes divided into two groups. The first group included 21 athletes who were predominantly engaged in aerobic type of training, and the other group of 21 athletes in anaerobic type of training. Anthropometric measurements were taken and resting metabolic rate was assessed using the indirect calorimetry method. The results were statistically analyzed and the differences in parameters between the two groups were compared. Results. Statistically significant differences were established in total body mass, amount of fat-free mass and muscle mass, body mass index, as well as in the relative metabolic indices between two groups of subjects. Conclusion. The percentage of fat-free body mass has the greatest impact on the resting metabolic rate. The rate of metabolic activity of this body compartment is higher in athletes engaged in aerobic than in athletes engaged in anaerobic type of training.


2020 ◽  
Author(s):  
Ghazaleh Khalili ◽  
Atieh Mirzababaei ◽  
Farideh Shiraseb ◽  
Khadijeh Mirzaei

Abstract Objective: Obesity as a worldwide phenomenon is a multifactorial condition. Healthy diets have effect on obesity related factors like resting metabolic rate (RMR). In present study, we investigate association between adherence to modified Nordic diet and RMR among overweight and obese participants.Methods: We enrolled 404 overweight and obese (BMI ≥25 kg/m2) women aged 18-48 years in this cross-sectional study. For each participant anthropometrics measurements, biochemical tests and blood pressure were evaluated. RMR was measured by indirect calorimetry. RMR/kg was also measured. Modified Nordic diet score was measured using a validated 147-item food frequency questionnaire (FFQ).Results: Among all participants, the mean and standard deviation (SD) for age and body mass index (BMI) were 36.67 years (SD=9.10) and 31.26 kg/m2 (SD=4.29). There was a significant association between RMR/kg status and age, body mass index (BMI), RMR (P<0.001), respiratory quotient (RQ), fat percentage (P= 0.01), systolic blood pressure (SBP) (P= 0.03), and diastolic blood pressure (DBP) (P= 0.04), after adjustment for age, BMI, energy intake and physical activity. Participants with the highest adherence to modified Nordic diet had lower odds of hypometabolic status after adjusting for confounders and it was significant (odds ratio (OR) = 3.15, 95% CI= 0.97-10.15, P=0.05).Conclusions: The present results indicate that adherence to modified Nordic diet is associated with lower odds of hypometabolic status in overweight and obese women. However more studies are needed to confirm our findings.


The Condor ◽  
2006 ◽  
Vol 108 (1) ◽  
pp. 166-177 ◽  
Author(s):  
Michael R. Miller ◽  
John McA. Eadie

AbstractWe examined the allometric relationship between resting metabolic rate (RMR; kJ day−1) and body mass (kg) in wild waterfowl (Anatidae) by regressing RMR on body mass using species means from data obtained from published literature (18 sources, 54 measurements, 24 species; all data from captive birds). There was no significant difference among measurements from the rest (night; n = 37), active (day; n = 14), and unspecified (n = 3) phases of the daily cycle (P > 0.10), and we pooled these measurements for analysis. The resulting power function (aMassb) for all waterfowl (swans, geese, and ducks) had an exponent (b; slope of the regression) of 0.74, indistinguishable from that determined with commonly used general equations for nonpasserine birds (0.72–0.73). In contrast, the mass proportionality coefficient (b; y-intercept at mass = 1 kg) of 422 exceeded that obtained from the nonpasserine equations by 29%–37%. Analyses using independent contrasts correcting for phylogeny did not substantially alter the equation. Our results suggest the waterfowl equation provides a more appropriate estimate of RMR for bioenergetics analyses of waterfowl than do the general nonpasserine equations. When adjusted with a multiple to account for energy costs of free living, the waterfowl equation better estimates daily energy expenditure. Using this equation, we estimated that the extent of wetland habitat required to support wintering waterfowl populations could be 37%–50% higher than previously predicted using general nonpasserine equations.


2020 ◽  
Vol 223 (19) ◽  
pp. jeb215384
Author(s):  
Alexander R. Gerson ◽  
Joely G. DeSimone ◽  
Elizabeth C. Black ◽  
Morag F. Dick ◽  
Derrick J. Groom

ABSTRACTMigratory birds catabolize large quantities of protein during long flights, resulting in dramatic reductions in organ and muscle mass. One of the many hypotheses to explain this phenomenon is that decrease in lean mass is associated with reduced resting metabolism, saving energy after flight during refueling. However, the relationship between lean body mass and resting metabolic rate remains unclear. Furthermore, the coupling of lean mass with resting metabolic rate and with peak metabolic rate before and after long-duration flight have not previously been explored. We flew migratory yellow-rumped warblers (Setophaga coronata) in a wind tunnel under one of two humidity regimes to manipulate the rate of lean mass loss in flight, decoupling flight duration from total lean mass loss. Before and after long-duration flights, we measured resting and peak metabolism, and also measured fat mass and lean body mass using quantitative magnetic resonance. Flight duration ranged from 28 min to 600 min, and birds flying under dehydrating conditions lost more fat-free mass than those flying under humid conditions. After flight, there was a 14% reduction in resting metabolism but no change in peak metabolism. Interestingly, the reduction in resting metabolism was unrelated to flight duration or to change in fat-free body mass, indicating that protein metabolism in flight is unlikely to have evolved as an energy-saving measure to aid stopover refueling, but metabolic reduction itself is likely to be beneficial to migratory birds arriving in novel habitats.


2020 ◽  
Vol 75 (12) ◽  
pp. 2262-2268 ◽  
Author(s):  
Marta Zampino ◽  
Richard D Semba ◽  
Fatemeh Adelnia ◽  
Richard G Spencer ◽  
Kenneth W Fishbein ◽  
...  

Abstract Resting metabolic rate (RMR) tends to decline with aging. The age-trajectory of decline in RMR is similar to changes that occur in muscle mass, muscle strength, and fitness, but while the decline in these phenotypes has been related to changes of mitochondrial function and oxidative capacity, whether lower RMR is associated with poorer mitochondrial oxidative capacity is unknown. In 619 participants of the Baltimore Longitudinal Study of Aging, we analyzed the cross-sectional association between RMR (kcal/day), assessed by indirect calorimetry, and skeletal muscle maximal oxidative phosphorylation capacity, assessed as postexercise phosphocreatine recovery time constant (τ PCr), by phosphorous magnetic resonance spectroscopy. Linear regression models were used to evaluate the relationship between τ PCr and RMR, adjusting for potential confounders. Independent of age, sex, lean body mass, muscle density, and fat mass, higher RMR was significantly associated with shorter τ PCr, indicating greater mitochondrial oxidative capacity. Higher RMR is associated with a higher mitochondrial oxidative capacity in skeletal muscle. This association may reflect a relationship between better muscle quality and greater mitochondrial health.


1997 ◽  
Vol 75 (11) ◽  
pp. 1781-1789 ◽  
Author(s):  
Patrice Boily ◽  
David M. Lavigne

Resting metabolic rate (RMR) data obtained from five juvenile and three adult female grey seals (Halichoerus grypus) in captivity over a period of 3.5 years were examined for developmental and seasonal changes. Three juveniles exhibited a significant relationship between log10 RMR and log10 mass, with individual slopes ranging from 0.42 to 1.62. Two of these exhibited a significant relationship between log10 RMR and log10 age. The remaining two juveniles and the three adults exhibited no significant relationship between RMR and body mass. With increasing size and age, RMRs of juveniles approached predicted values for adult mammals, but the large variation made it difficult to establish the precise age at which they achieved an adult-like RMR. RMRs of adults and juveniles exhibited marked seasonal changes. In juveniles, seasonal changes in RMR were limited to the annual moult, when the average RMR was 35% higher than during the rest of the year. In adults, changes in RMR were not limited to the time of the annual moult; rather, RMR was lower (by up to 50%) in the summer than during other seasons.


2009 ◽  
Vol 55 (4) ◽  
pp. 249-257 ◽  
Author(s):  
Zhijun Zhao ◽  
Jing Cao ◽  
Ye Tian ◽  
Ruirui Wang ◽  
Guiying Wang

Abstract When small animals are faced with an unpredictable food supply, they can adapt by altering different components of their energy budget such as energy intake, metabolic rate, rate of non-shivering thermogenesis (NST) or behaviour. The present study examined the effect of stochastic food deprivation (FD) on body mass, food intake, resting metabolic rate (RMR), NST and behaviour in male Swiss mice. During a period of 4 weeks’ FD, animals were fed ad libitum for a randomly assigned 4 days each week, but were deprived of food for the other 3 days. The results showed that body mass significantly dropped on FD days compared to controls. Food intake of FD mice increased significantly on ad libitum days, ensuring cumulative food intake, final body mass, fat mass, RMR and NST did not differ significantly from controls. Moreover, gastrointestinal tract mass increased in FD mice, but digestibility decreased. In general, activity was higher on deprived days, and feeding behaviour was higher on ad libitum days suggesting that Swiss mice are able to compensate for stochastic FD primarily by increasing food intake on ad libitum days, and not by reducing energy expenditure related to RMR or NST.


Sign in / Sign up

Export Citation Format

Share Document