scholarly journals Distinct Phenotypes Associated with Mangrove and Lagoon Habitats in Two Widespread Caribbean Corals, Porites astreoides and Porites divaricata

2021 ◽  
pp. 000-000
Author(s):  
Karina Scavo Lord ◽  
Anna Barcala ◽  
Hannah E. Aichelman ◽  
Nicola G. Kriefall ◽  
Chloe Brown ◽  
...  
Coral Reefs ◽  
2021 ◽  
Author(s):  
Florentine Riquet ◽  
Aurélien Japaud ◽  
Flávia L. D. Nunes ◽  
Xaymara M. Serrano ◽  
Andrew C. Baker ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 288
Author(s):  
Ryan G. Eagleson ◽  
John S. Lumsden ◽  
Lorenzo Álvarez-Filip ◽  
Christophe M. Herbinger ◽  
Ryan A. Horricks

Despite coral community collapse, the mustard hill coral (Porites astreoides) is a species currently experiencing success throughout the Caribbean. The inshore reefs of Grenada were selected to study the influence of benthic factors on the abundance, size, and coverage of P. astreoides colonies. Surveys of reef communities along established 30 m transects were conducted at eight sites in 2014 and 2017 using a 0.5 m² quadrat. Coral Point Count was used to annotate the images, estimating the coverage of scleractinian corals, sponges, algae, and benthic substrates. Coverage, size, and abundance of P. astreoides colonies were quantified using the area measurement tool in ImageJ standardized against the quadrats. There were significant differences in benthic community assemblages between islands, selected sites, and between years. From 2014 to 2017 there was a significant decrease in the mean abundance of P. astreoides colonies and significant increases in mean colony size and coverage. The presence of P. astreoides colonies was significantly correlated with: rubble (−), sand (−); pavement (+); macroalgae (−); coralline algae (+); sponges (varying response); gorgonians (−); massive corals (+); and branching corals (−). P. astreoides follows similar recruitment patterns as other scleractinian corals. Observed changes in P. astreoides populations appear to indicate a recovery event following a disturbance, potentially tropical storm Chantal in 2013.


2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Dominique N. Gallery ◽  
Michelle L. Green ◽  
Ilsa B. Kuffner ◽  
Elizabeth A. Lenz ◽  
Lauren T. Toth

AbstractIncreases in local and global stressors have led to major declines in coral populations throughout the western Atlantic. While abundances of other species have declined, however, the relative abundance of the mustard hill coral, Porites astreoides, has increased. Porites astreoides is relatively resilient to some stressors, and because of its mixed reproductive strategies, its populations often recover quickly following disturbances. The ability for P. astreoides to continue as a potential “winner” in western Atlantic reefs relies on maintaining sufficient genetic variation within populations to support acclimatization and adaptation to current and future environmental change. Without high genetic diversity and gene flow within the population, it would have limited capacity for adaptation and the species’ competitive advantages could be short-lived. In this study, we determined the genetic relatedness of 37 P. astreoides colonies at four shallow reefs along the offshore Florida Keys Reef Tract (FKRT), a region particularly hard-hit by recent disturbances. Using previously designed microsatellite markers, we determined the genetic diversity and connectivity of individuals among and between sites. Our results suggest that the FKRT likely contains a single, well-mixed genetic population of P. astreoides, with high levels of gene flow and evidence for larval migration throughout the region. This suggests that regional populations of P. astreoides likely have a higher chance of maintaining resilience than many other western Atlantic species as they face current and future disturbances.


2016 ◽  
Vol 283 (1831) ◽  
pp. 20160442 ◽  
Author(s):  
Emma F. Camp ◽  
David J. Smith ◽  
Chris Evenhuis ◽  
Ian Enochs ◽  
Derek Manzello ◽  
...  

Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50–100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals ( Acropora palmata and Porites astreoides ) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.


2011 ◽  
Vol 426 ◽  
pp. 161-170 ◽  
Author(s):  
VJ Paul ◽  
IB Kuffner ◽  
LJ Walters ◽  
R Ritson-Williams ◽  
KS Beach ◽  
...  

Author(s):  
Dagoberto E. Venera Pontón ◽  
Javier Reyes ◽  
Guillermo Diaz Pulido

Porites colonensis is a coral from the Caribbean Sea; colonies are foliaceous, undulated, and plate-like. Polyps are dark brown or red with small bright white or green centers; pali are present in corallites and the septal plan is bisymmetrical, conformed by three fused ventral septa, a dorsal solitary septum, and two pairs of lateral septa at each side of the dorso-ventral axis. P. colonensis is similar and can be confused with the smooth varieties of Porites astreoides and Porites branneri. There are three specimens collected from Colombia and previously identified as P. colonensis: one from Golfo de Urabá (Darién ecoregion), other from Islas del Rosario (Coralline Archipelagos ecoregion), and another from an unspecified locality, in addition to one published observation from the Golfo de Urabá without collected specimens. A recent finding of other specimens in the Tayrona National Natural Park (TNNP, Tayrona ecoregion) and the absence of a rigorous taxonomic revision for all specimens collected from Colombia showed that it was necessary to review the presence and distribution of P. colonensis in the Colombian Caribbean. A taxonomic review was done for all specimens collected from Colombia and previously identified as P. colonensis. Then, the morphologic variability of specimens that were confirmed as P. colonensis was described. Only the specimens from TNNP agreed with the holotype description of P. colonensis, while others agreed with flat varieties of P. astreoides. Thus, the presence of P. colonensis is confirmed for the first time for Colombia, but its presence in other Colombian localities outside Tayrona ecoregion could not be demonstrated. This is the only confirmed record of this species for the South American continental shelf. Furthermore, the skeletal characteristics of Colombian P. colonensis corallites showed large variability, exceeding the ranges previously described for the species.


2017 ◽  
Vol 32 (1) ◽  
pp. 11
Author(s):  
IVONNE LUNA ORTEGA ◽  
VICENCIO DE LA CRUZ FRANCISCO

Las macroalgas son abundantes en el arrecife Oro Verde, Veracruz pero, hasta ahora, se desconocía su riqueza taxonómica, y se presume que presentan asentamientos en los corales escleractinios hermatípicos. Por ello el presente trabajo investigó qué especies de corales presentaron colonizaciones algales; además, se determinó la composición taxonómica y la similitud de los ensambles de macroalgas entre las especies de corales escleractinios. Se establecieron diez puntos de muestreo de manera sistemática en el arrecife; en cada lugar de estudio se colocó un transecto de banda de 50 x 2 m para localizar y recolectar macroalgas en superficies muertas de corales escleractinios. La frecuencia de aparición de las algas se estimó con base en el total de corales estudiados, así como para cada especie coral. Para explicar similitudes y diferencias significativas de la composición de ensamblajes macroalgales entre especies de corales se aplicaron análisis de similitud y ordenación. Los corales escleractinios con ensambles de algas fueron Siderastrea siderea, Montastraea cavernosa, Pseudodiploria strigosa, Colpophylia natans, Stephanocoenia intersepta, Porites astreoides, Orbicella annularis, Orbicella faveolata. De un total de 100 colonias coralinas revisadas se determinaron 32 especies de macroalgas, las cuales están representadas en tres divisiones, 10 órdenes y 15 familias. Las macroalgas corticadas, foliosas corticadas y filamentosas fueron las más representadas en especies. Las algas de mayor frecuencia sobre los corales masivos fueron Laurencia obtusa, Amphiroa rigida y Caulerpa chemnitzia. Los corales masivos con mayor número de registros de algas fueron S. siderea (9 especies), M. cavernosa (19) y P. strigosa (17). Los ensambles algales en los corales masivos presentaron baja similitud, sin embargo no se detectaron grupos significativamente disimiles. Solamente S. siderea y M. cavernosa son ligeramente parecidos en la composición ficológica. Los resultados sugieren que los corales masivos del arrecife Oro Verde son vulnerables a la colonización de algas, pero es necesario indagar qué condiciones preceden al asentamiento algal.Macroalgal assemblages on dead surfaces of scleractinian corals (Anthozoa: Scleractinia) in the Oro Verde reef, Veracruz, MexicoBenthic macroalgae are abundant in the Oro Verde reef but their taxonomic richness was hitherto unknown and it is presumed to present settlements on the massive corals. For this reason, the present work investigated which species of massive corals show algal colonization. Also, their taxonomic composition was determined, and the similarity of the algal assemblages between species of scleractinian corals was measured. Ten sampling points were systematically established in the reef, where a transect band of 50 x 2 m at each site was placed to locate and collect algae fron the dead surfaces of scleractinian corals. The frequency of occurrence of algae species was estimated based on the total number of coral species studied, as well as on each coral species. Similarity and ordination analysis were applied in order to explain similarities and significant differences of the phycological composition among the coral species. Scleractinian corals with algal assemblages were: Siderastrea siderea, Montastraea cavernosa, Pseudodiploria strigosa, Colpophylia natans, Stephanocoenia intersepta, Porites astreoides, Orbicella annularis, Orbicella faveolata. Thirty-two species of algae were identified from a total of 100 revised coral colonies which are represented in 3 divisions, 10 orders and 15 families. The corticated, foliose corticated and filamentous macroalgae were the most represented species. The most frequent algae on massive corals were Laurencia obtusa, Amphiroa rigida and Caulerpa chemnitzia. Massive corals with higher algal records were S. siderea (9 species), M. cavernosa (19 species) and P. strigosa (17 species). The algal assemblages on the massive corals presented low similarity. However, no significant dissimilar groups were detected. Only S. siderea and M. cavernosa are relatively similar in phycological composition. The results suggest that the massive corals of the Oro Verde reef are vulnerable to the colonization of algae, but it is necessary to investigate the conditions preceding algal settlement.


Sign in / Sign up

Export Citation Format

Share Document