scholarly journals THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

2013 ◽  
Vol 766 (2) ◽  
pp. 121 ◽  
Author(s):  
Paul Martini ◽  
Daniel Dicken ◽  
Thaisa Storchi-Bergmann
2007 ◽  
Vol 3 (S245) ◽  
pp. 233-234
Author(s):  
A. Beifiori ◽  
E. M. Corsini ◽  
E. Dalla Bontà ◽  
A. Pizzella ◽  
L. Coccato ◽  
...  

AbstractThe growth of supermassive black holes (SMBHs) appears to be closely linked with the formation of spheroids. There is a pressing need to acquire better statistics on SMBH masses, since the existing samples are preferentially weighted toward early-type galaxies with very massive SMBHs. With this motivation we started a project aimed at measuring upper limits on the mass of the SMBHs that can be present in the center of all the nearby galaxies (D < 100 Mpc) for which STIS/G750M spectra are available in the HST archive. These upper limits will be derived by modeling the central emission-line widths ([N II] λλ6548, 6583, Hα and [S II] λλ6716, 6731) observed over an aperture of ~01 (R < 50 pc). Here we present our preliminary results for a subsample of 76 bulges.


Nature ◽  
2006 ◽  
Vol 442 (7105) ◽  
pp. 888-891 ◽  
Author(s):  
Kevin Schawinski ◽  
Sadegh Khochfar ◽  
Sugata Kaviraj ◽  
Sukyoung K. Yi ◽  
Alessandro Boselli ◽  
...  

2007 ◽  
Vol 3 (S245) ◽  
pp. 203-206
Author(s):  
Laura Ferrarese ◽  
Patrick Côté

AbstractThe core structure of early-type galaxies is revisited in light of recent results from the ACS Virgo and Fornax Cluster Surveys. These surveys are comprised of HST/ACS g, z band images for a representative sample of 143 early-type galaxies, spanning a factor 720 in B-band luminosity. The data indicates a clear transition in the core structure going from the brightest to the faintest galaxies. In contrast to previous claims, however, this transition is found to be a continuous function of galaxy magnitude. We characterize the core structure in terms of deviations of the observed surface brightness profile – measured within ~ 2% of the galaxy effective radius – relative to the inner extrapolation of the Sérsic law that best fits the profiles on larger scales. Virtually all galaxies fainter than MB ~ −20 mag contain distinct stellar nuclei, and are described by surface brightness profiles that lie above the Sérsic extrapolation, while the reverse is true for brighter galaxies. The latter are also known to host supermassive black holes. A relation between SBHs and stellar nuclei is suggested by the fact that both types of “central massive objects” contain the same fraction, 0.2% of the total mass of the host galaxy.


2006 ◽  
Vol 2 (S238) ◽  
pp. 349-350
Author(s):  
E. M. Corsini ◽  
A. Beifiori ◽  
E. Dalla Bontà ◽  
A. Pizzella ◽  
L. Coccato ◽  
...  

AbstractThe growth of supermassive black holes (SBHs) appears to be closely linked with the formation of spheroids. There is a pressing need to acquire better statistics on SBH masses, since the existing samples are preferentially weighted toward early-type galaxies with very massive SBHs. With this motivation we started a project aimed at measuring upper limits on the mass of the SBHs in the center of all the nearby galaxies (D < 100 Mpc) for which STIS/G750M spectra are available in the HST archive. These upper limits will be derived by modeling the central emission-line widths observed in the Hα region over an aperture of ∼0.1″. Here we present our results for a subsample of 22 S0-Sb galaxies within 20 Mpc.


2019 ◽  
Vol 488 (1) ◽  
pp. L134-L142 ◽  
Author(s):  
K Lakhchaura ◽  
N Truong ◽  
N Werner

ABSTRACT We present a study of relations between the masses of the central supermassive black holes (SMBHs) and the atmospheric gas temperatures and luminosities measured within a range of radii between Re and 5Re, for a sample of 47 early-type galaxies observed by the Chandra X-ray Observatory. We report the discovery of a tight correlation between the atmospheric temperatures of the brightest cluster/group galaxies (BCGs) and their central SMBH masses. Furthermore, our hydrostatic analysis reveals an approximately linear correlation between the total masses of BCGs (Mtot) and their central SMBH masses (MBH). State-of-the-art cosmological simulations show that the SMBH mass could be determined by the binding energy of the halo through radiative feedback during the rapid black hole growth by accretion, while for the most massive galaxies mergers are the chief channel of growth. In the scenario of a simultaneous growth of central SMBHs and their host galaxies through mergers, the observed linear correlation could be a natural consequence of the central limit theorem.


Sign in / Sign up

Export Citation Format

Share Document