Pulsed laser deposition of films on fused silica in waveguide form

1998 ◽  
Vol 31 (22) ◽  
pp. 3185-3187 ◽  
Author(s):  
J Yin ◽  
Z C Wu ◽  
Z L Wang ◽  
Y Y Zhu ◽  
Z G Liu
2003 ◽  
Vol 780 ◽  
Author(s):  
B. Luther-Davies ◽  
V. Z. Kolev ◽  
M. J. Lederer ◽  
R. Yinlan ◽  
M. Samoc ◽  
...  

AbstractUltra-fast pulsed laser deposition using high-repetition-rate short-pulse lasers has been shown to provide high optical quality, super smooth thin films free of scattering centres. The optimized process conditions require short ps or sub-ps pulses with repetition rate in the range 1-100 MHz, depending on the target material. Ultra-fast pulsed laser deposition was used to successfully deposit atomically-smooth, 5micron thick As2S3 films. The as-deposited films were photosensitive at wavelengths close to the band edge (≈520 nm) and waveguides could be directly patterned into them by photo-darkening using an Argon ion or frequency doubled Nd:YAG laser. The linear and nonlinear optical properties of the films were measured as well as the photosensitivity of the material. The optical losses in photo-darkened waveguides were <0.2 dB/cm at wavelengths beyond 1200nm and <0.1 dB/cm in as-deposited films. The third order nonlinearity, n2,As2S3, was measured using both four-wave mixing and the z-scan technique and varied with wavelength from 100 to 200 times fused silica (n2,Silica ≈3×10-16 cm2/W) between 1500nm and 1100nm with low nonlinear absorption.Encouraged by the Ultrafast laser deposition results, we have built a new specialized modelocked picosecond laser system for deposition of optical films and for laser formation of nanoclusters. The newly developed “state of the art” powerful Nd:YVO laser can operate over a wide range of wavelengths, intensities, and repetition rates in MHz range. A brief description of the 50W laser installation is presented.


2006 ◽  
Vol 6 (11) ◽  
pp. 3426-3428
Author(s):  
Ji-Suk Kim ◽  
Kyeong-Seok Lee ◽  
Sang Sub Kim

Nanocomposite thin films consisting of nanometer-sized Ag particles embedded in amorphous Ba0.5Sr0.5TiO3 matrix were prepared on fused silica substrates by an alternating pulsed laser deposition method. Their optical nonlinearities have been studied using the Z-scan method. The surface plasmon resonance (SPR) peak shifts to red and increases with the increasing the volume fraction of Ag in the nanocomposite films. The magnitude of the third-order nonlinear susceptibility of the nanocomposite with an Ag volume fraction of 3.3% was calculated to be ∼2 × 10−8 esu at the SPR wavelength.


1995 ◽  
Vol 382 ◽  
Author(s):  
Randolph E. Treece ◽  
Paul Dorsey ◽  
James S. Horwitz ◽  
Syed Qadri ◽  
Douglas B. Chrisey

ABSTRACTHigh-quality thin-film superlattices of permalloy (NiFe) and silver (Ag) have been grown by pulsed laser deposition (PLD) for the first time. The alternating metallic layers weregrown from individual NiFe and Ag targets utilizing an automated multi-target holder coupled to a conventional PLD system. The targets were ablated at a base pressure of 4×10−7 Torr and the material deposited on room-temperature (100) silicon and on fused silica substrates. The films were characterized by X-ray diffraction (XRD), magnetic field-dependent resistivity, and ferromagnetic resonance (FMR). XRD was used to confirm uniform bilayer thicknesses. The magnetic field-dependent resistance measurements indicated the presence of magnetoresistance in the deposited films. An as-deposited film with a bilayer thickness of 75 Å demonstrated a roomtemperature magnetoresistive effect of 0.15 %. FMR has been used to determine the relationship between NiFe magnetism and the observed magnetoresistance.


Laser Physics ◽  
2017 ◽  
Vol 27 (9) ◽  
pp. 095601 ◽  
Author(s):  
Miroslav Jelínek ◽  
Jan Drahokoupil ◽  
Karel Jurek ◽  
Tomáš Kocourek ◽  
Přemysl Vaněk

2005 ◽  
Vol 473 (2) ◽  
pp. 296-299 ◽  
Author(s):  
Bin Yang ◽  
Feiyan Wang ◽  
Jiaping Han ◽  
Yanfeng Chen ◽  
Shining Zhu ◽  
...  

1993 ◽  
Vol 73 (12) ◽  
pp. 8242-8249 ◽  
Author(s):  
L. Rimai ◽  
R. Ager ◽  
J. Hangas ◽  
E. M. Logothetis ◽  
Nayef Abu‐Ageel ◽  
...  

2006 ◽  
Vol 957 ◽  
Author(s):  
Wei Wei ◽  
Chunming Jin ◽  
Anand Doraiswamy ◽  
Roger J Narayan ◽  
Jagdish Narayan

ABSTRACTMg0.15Zn0.85O thin films were grown on fused silica substrates at different substrate temperatures using pulsed laser deposition. X-ray diffraction and transmission electron microscopy were used to investigate the structure of the films. High resolution transmission electron microscopy showed that the film contained small grains with low angle boundaries. The optical properties of the films were investigated using absorption spectra. The bandgap energy values of the films was determined by fitting the absorption data.


Author(s):  
Michael P. Mallamaci ◽  
James Bentley ◽  
C. Barry Carter

Glass-oxide interfaces play important roles in developing the properties of liquid-phase sintered ceramics and glass-ceramic materials. Deposition of glasses in thin-film form on oxide substrates is a potential way to determine the properties of such interfaces directly. Pulsed-laser deposition (PLD) has been successful in growing stoichiometric thin films of multicomponent oxides. Since traditional glasses are multicomponent oxides, there is the potential for PLD to provide a unique method for growing amorphous coatings on ceramics with precise control of the glass composition. Deposition of an anorthite-based (CaAl2Si2O8) glass on single-crystal α-Al2O3 was chosen as a model system to explore the feasibility of PLD for growing glass layers, since anorthite-based glass films are commonly found in the grain boundaries and triple junctions of liquid-phase sintered α-Al2O3 ceramics.Single-crystal (0001) α-Al2O3 substrates in pre-thinned form were used for film depositions. Prethinned substrates were prepared by polishing the side intended for deposition, then dimpling and polishing the opposite side, and finally ion-milling to perforation.


1998 ◽  
Vol 08 (PR9) ◽  
pp. Pr9-261-Pr9-264
Author(s):  
M. Tyunina ◽  
J. Levoska ◽  
A. Sternberg ◽  
V. Zauls ◽  
M. Kundzinsh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document