Jacobian Elliptic Function Method and Solitary Wave Solutions for Hybrid Lattice Equation

2006 ◽  
Vol 45 (6) ◽  
pp. 1057-1062 ◽  
Author(s):  
Wang Rui-Min ◽  
Dai Chao-Qing ◽  
Zhang Jie-Fang
2021 ◽  
pp. 2150391
Author(s):  
Ghazala Akram ◽  
Naila Sajid

In this article, three mathematical techniques have been operationalized to discover novel solitary wave solutions of (2+1)-dimensional Maccari system, which also known as soliton equation. This model equation is usually of applicative relevance in hydrodynamics, nonlinear optics and plasma physics. The [Formula: see text] function, the hyperbolic function and the [Formula: see text]-expansion techniques are used to obtain the novel exact solutions of the (2+1)-dimensional Maccari system (arising in nonlinear optics and in plasma physics). Many novel solutions such as periodic wave solutions by [Formula: see text] function method, singular, combined-singular and periodic solutions by hyperbolic function method, hyperbolic, rational and trigonometric solutions by [Formula: see text]-expansion method are obtained. The exact solutions are shown through 3D graphics which present the movement of the obtained solutions.


2005 ◽  
Vol 60 (4) ◽  
pp. 237-244 ◽  
Author(s):  
M. M. Hassan ◽  
A. H. Khater

Abstract The Jacobi elliptic function solutions of coupled nonlinear partial differential equations, including the coupled modified KdV (mKdV) equations, long-short-wave interaction system and the Davey- Stewartson (DS) equations, are obtained by using the mixed dn-sn method. The solutions obtained in this paper include the single and the combined Jacobi elliptic function solutions. In the limiting case, the solitary wave solutions of the systems are also given. - PACS: 02.30.Jr; 03.40.Kf; 03.65.Fd


2015 ◽  
Vol 70 (9) ◽  
pp. 775-779 ◽  
Author(s):  
Elsayed M.E. Zayed ◽  
Abdul-Ghani Al-Nowehy

AbstractIn this article, the multiple exp-function method and the linear superposition principle are employed for constructing the exact solutions and the solitary wave solutions for the (2+1)-dimensional Calogero–Bogoyavlenskii–Schiff (CBS) equation. With help of Maple and by using the multiple exp-method, we can get exact explicit one-wave, two-wave, and three-wave solutions, which include one-soliton-, two-soliton-, and three-soliton-type solutions. Furthermore, we apply the linear superposition principle to find n-wave solutions of the CBS equation. Two cases with specific values of the involved parameters are plotted for each two-wave and three-wave solutions.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 309-314 ◽  
Author(s):  
Song-Hua Ma ◽  
Yi-Pin Lu ◽  
Jian-Ping Fang ◽  
Zhi-Jie Lv

Abstract With an extended mapping approach and a linear variable separation approach, a series of solutions (including theWeierstrass elliptic function solutions, solitary wave solutions, periodic wave solutions and rational function solutions) of the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations.


2008 ◽  
Vol 63 (12) ◽  
pp. 763-777 ◽  
Author(s):  
Biao Li ◽  
Yong Chen ◽  
Yu-Qi Li

On the basis of symbolic computation a generalized sub-equation expansion method is presented for constructing some exact analytical solutions of nonlinear partial differential equations. To illustrate the validity of the method, we investigate the exact analytical solutions of the inhomogeneous high-order nonlinear Schrödinger equation (IHNLSE) including not only the group velocity dispersion, self-phase-modulation, but also various high-order effects, such as the third-order dispersion, self-steepening and self-frequency shift. As a result, a broad class of exact analytical solutions of the IHNLSE are obtained. From our results, many previous solutions of some nonlinear Schrödinger-type equations can be recovered by means of suitable selections of the arbitrary functions and arbitrary constants. With the aid of computer simulation, the abundant structure of bright and dark solitary wave solutions, combined-type solitary wave solutions, dispersion-managed solitary wave solutions, Jacobi elliptic function solutions and Weierstrass elliptic function solutions are shown by some figures.


Sign in / Sign up

Export Citation Format

Share Document