Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

2007 ◽  
Vol 48 (3) ◽  
pp. 465-468 ◽  
Author(s):  
Zhao Hai-Xia ◽  
Li Huai-Fan ◽  
Hu Shuang-Qi ◽  
Zhao Ren
2008 ◽  
Vol 23 (14n15) ◽  
pp. 2169-2171 ◽  
Author(s):  
YUKINORI YASUI

This paper gives a brief review of recent results on higher dimensional black hole solutions. It is shown that the D-dimensional Kerr-NUT-de Sitter spacetime constructed by Chen-Lü-Pope is the only spacetime admitting a rank-2 conformal Killing-Yano tensor with a certain symmetry.


2010 ◽  
Vol 25 (20) ◽  
pp. 1697-1703 ◽  
Author(s):  
S. MIGNEMI

It has been proposed that on (anti)-de Sitter background, the Heisenberg uncertainty principle should be modified by the introduction of a term proportional to the cosmological constant. We show that this modification of the uncertainty principle can be derived straightforwardly from the geometric properties of (anti)-de Sitter spacetime. We also discuss the connection between the so-called extended generalized uncertainty principle and triply special relativity.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Meng-Sen Ma ◽  
Li-Chun Zhang ◽  
Hui-Hua Zhao ◽  
Ren Zhao

We study the phase transition of charged Gauss-Bonnet-de Sitter (GB-dS) black hole. For black holes in de Sitter spacetime, there is not only black hole horizon, but also cosmological horizon. The thermodynamic quantities on both horizons satisfy the first law of the black hole thermodynamics, respectively; moreover, there are additional connections between them. Using the effective temperature approach, we obtained the effective thermodynamic quantities of charged GB-dS black hole. According to Ehrenfest classification, we calculate some response functions and plot their figures, from which one can see that the spacetime undergoes a second-order phase transition at the critical point. It is shown that the critical values of effective temperature and pressure decrease with the increase of the value of GB parameterα.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Rachel A. Rosen ◽  
Luca Santoni

Abstract We provide a systematic and comprehensive derivation of the linearized dynamics of massive and partially massless spin-2 particles in a Schwarzschild (anti) de Sitter black hole background, in four and higher spacetime dimensions. In particular, we show how to obtain the quadratic actions for the propagating modes and recast the resulting equations of motion in a Schrödinger-like form. In the case of partially massless fields in Schwarzschild de Sitter spacetime, we study the isospectrality between modes of different parity. In particular, we prove isospectrality analytically for modes with multipole number L = 1 in four spacetime dimensions, providing the explicit form of the underlying symmetry. We show that isospectrality between partially massless modes of different parity is broken in higher-dimensional Schwarzschild de Sitter spacetimes.


2007 ◽  
Vol 22 (37) ◽  
pp. 2865-2872 ◽  
Author(s):  
TANWI GHOSH

The entropy of a scalar field in the background of a dilatonic black hole both in anti de Sitter and de Sitter spacetime has been calculated using brick wall method. The form of divergent contributions to the entropy is in agreement with the previous calculations in the literature. The semiclassical approach used here is straightforward and produces finite result apart from an ambiguity in logarithmic terms.


2002 ◽  
Vol 17 (20) ◽  
pp. 2747-2747
Author(s):  
A. BEESHAM

The singularity theorems of general relativity predict that gravitational collapse finally ends up in a spacetime singularity1. The cosmic censorship hypothesis (CCH) states that such a singularity is covered by an event horizon2. Despite much effort, there is no rigorous formulation or proof of the CCH. In view of this, examples that appear to violate the CCH and lead to naked singularities, in which non-spacelike curves can emerge, rather than black holes, are important to shed more light on the issue. We have studied several collapse scenarios which can lead to both situations3. In the case of the Vaidya-de Sitter spacetime4, we have shown that the naked singularities that arise are of the strong curvature type. Both types of singularities can also arise in higher dimensional Vaidya and Tolman-Bondi spacetimes, but black holes are favoured in some sense by the higher dimensions. The charged Vaidya-de Sitter spacetime also exhibits both types of singularities5.


Sign in / Sign up

Export Citation Format

Share Document