Branching of rotating waves in a one-parameter problem of steady-state bifurcation with spherical symmetry

Nonlinearity ◽  
1991 ◽  
Vol 4 (4) ◽  
pp. 1123-1129 ◽  
Author(s):  
P Chossat
1994 ◽  
Vol 04 (04) ◽  
pp. 885-904 ◽  
Author(s):  
S.B.S.D. CASTRO

We study mode interaction steady-state bifurcation problems with spherical symmetry. Using the representation of O(3) in terms of spherical harmonics, we study the interactions of the modes of dimension 1, 3 and 5. When studying mode interactions involving the 3- and the 5-dimensional modes, we come across a very natural representation, which turns out to be that of SO(3) instead of O(3). Given that the study of problems with this latter symmetry has already been done, we then study problems with SO(3) symmetry. For all these problems, we stress the existence of secondary bifurcations giving rise to the existence of limit cycles and the occurrence of heteroclinic connections between equilibria.


1998 ◽  
Vol 60 (3) ◽  
pp. 529-539 ◽  
Author(s):  
RENU BAJAJ ◽  
S. K. MALIK

A nonlinear thermal instability in a layer of electrically conducting fluid in the presence of a magnetic field is discussed. Steady-state bifurcation results in the formation of patterns: rolls, squares and hexagons. The stability of various patterns is also investigated. It is found that in the absence of a magnetic field only rolls are stable, but when the magnetic field strength exceeds a certain finite value, squares and hexagons also become stable.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650066 ◽  
Author(s):  
Yan’e Wang ◽  
Jianhua Wu ◽  
Yunfeng Jia

A two-species biological depletion model in a bounded domain is investigated in which one species is a substrate and the other is an activator. Firstly, under the no-flux boundary condition, the asymptotic stability of constant steady-states is discussed. Secondly, by viewing the feed rate of the substrate as a parameter, the steady-state bifurcations from constant steady-states are analyzed both in one-dimensional kernel case and in two-dimensional kernel case. Finally, numerical simulations are presented to illustrate our theoretical results. The main tools adopted here include the stability theory, the bifurcation theory, the techniques of space decomposition and the implicit function theorem.


2008 ◽  
Vol 3 (2) ◽  
Author(s):  
Ankur Gupta ◽  
Saikat Chakraborty

Interaction between transport and reaction generates a variety of complex spatio-temporal patterns in chemical reactors. These patterned states, which are typically initiated by autocatalytic effects and sustained by differences in diffusion/local mixing rates, often cause undesired effects in the reactor. In this work, we analyze the dynamic evolution of mixing-limited spatial pattern formation in fast, homogeneous autocatalytic reactions occurring in isothermal tubular reactors using two-dimensional (2-D) convection-diffusion-reaction (CDR) models that are obtained through rigorous spatial averaging of the three-dimensional (3-D) CDR model using Liapunov-Schmidt technique of bifurcation theory. We use the spatially-averaged 2-D CDR model (and its "regularized" form) to perform steady-state bifurcation analysis that captures the region of multiple solutions, and we analyze the stability of these multiple steady states to transverse perturbations using linear stability analysis. Parametric analyses of the steady-state bifurcation diagrams and stability boundaries show that when transverse mixing is significantly slower than the rate of autocatalytic reaction, mixing-limited patterns emerge from the unstable middle branch that connects the ignition and extinction points of an S-shaped bifurcation curve. Our dynamic simulations show the emergence of three different types of spatial patterns namely, Band, Anti-phase and Target, depending on the nature of transverse perturbation. The temporal evolution of these patterns consists of rapid intensification of the concentration-segregation process (especially when transverse mixing is much slower than reaction) followed by slow diffusion-mediated return to symmetry that occurs at time scales much larger than the reactor residence time. Our parametric analysis of the dynamics reveals that while larger Péclet numbers (both axial and transverse) increase the stability and decay time of the patterned states, larger Damköhler numbers lead to faster ignition resulting in the opposite effect.


2019 ◽  
Vol 490 (4) ◽  
pp. 5078-5087 ◽  
Author(s):  
Alejandro Aguayo-Ortiz ◽  
Emilio Tejeda ◽  
X Hernandez

ABSTRACT Steady-state, spherically symmetric accretion flows are well understood in terms of the Bondi solution. Spherical symmetry, however, is necessarily an idealized approximation to reality. Here we explore the consequences of deviations away from spherical symmetry, first through a simple analytic model to motivate the physical processes involved, and then through hydrodynamical, numerical simulations of an ideal fluid accreting on to a Newtonian gravitating object. Specifically, we consider axisymmetric, large-scale, small-amplitude deviations in the density field such that the equatorial plane is overdense as compared to the polar regions. We find that the resulting polar density gradient dramatically alters the Bondi result and gives rise to steady-state solutions presenting bipolar outflows. As the density contrast increases, more and more material is ejected from the system, attaining speeds larger than the local escape velocities for even modest density contrasts. Interestingly, interior to the outflow region, the flow tends locally towards the Bondi solution, with a resulting total mass accretion rate through the inner boundary choking at a value very close to the corresponding Bondi one. Thus, the numerical experiments performed suggest the appearance of a maximum achievable accretion rate, with any extra material being ejected, even for very small departures from spherical symmetry.


Sign in / Sign up

Export Citation Format

Share Document