scholarly journals Near-field lenses in two dimensions

2002 ◽  
Vol 14 (36) ◽  
pp. 8463-8479 ◽  
Author(s):  
J B Pendry ◽  
S Anantha Ramakrishna
Keyword(s):  
2008 ◽  
Vol 595 ◽  
pp. 239-264 ◽  
Author(s):  
VISHWAJEET MEHANDIA ◽  
PRABHU R. NOTT

We propose a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We propose a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distributions of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with experimental measurements. The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic build-up near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation. Movies are available with the online version of the paper.


Author(s):  
Matthew J. Colbrook ◽  
Anastasia V. Kisil

Many problems in fluid mechanics and acoustics can be modelled by Helmholtz scattering off poro-elastic plates. We develop a boundary spectral method, based on collocation of local Mathieu function expansions, for Helmholtz scattering off multiple variable poro-elastic plates in two dimensions. Such boundary conditions, namely the varying physical parameters and coupled thin-plate equation, present a considerable challenge to current methods. The new method is fast, accurate and flexible, with the ability to compute expansions in thousands (and even tens of thousands) of Mathieu functions, thus making it a favourable method for the considered geometries. Comparisons are made with elastic boundary element methods, where the new method is found to be faster and more accurate. Our solution representation directly provides a sine series approximation of the far-field directivity and can be evaluated near or on the scatterers, meaning that the near field can be computed stably and efficiently. The new method also allows us to examine the effects of varying stiffness along a plate, which is poorly studied due to limitations of other available techniques. We show that a power-law decrease to zero in stiffness parameters gives rise to unexpected scattering and aeroacoustic effects similar to an acoustic black hole metamaterial.


2011 ◽  
Vol 2011 ◽  
pp. 1-15
Author(s):  
Johnny Papageorgakopoulos ◽  
Sokrates Tsangaris

We present a numerical methodology for evaluating wave propagation phenomena in two dimensions in the time domain with focus on the linear acoustic second-order wave equation. An outline of the higher-order compact discretization schemes followed by the time discretization technique is first presented. The method is completed with the addition of spatial filtering based on the same compact schemes' principles. The important role of boundary conditions is subsequently addressed. Two popular ways to truncate the computational domain in the near field are presented and compared here: first the formulation of “absorbing conditions” in the form of partial differential equations especially for the origin and second the construction of an absorbing layer surrounding the domain, in which waves (after they have exited the domain) are attenuated and decayed exponentially. Subsequently, the method is assessed by recalling three benchmark problems. In the first where a Gaussian pulse is generated and propagated in a 2D rectangular domain, the accuracy and absorbability of the boundary conditions are compared. In the second, a similar situation is investigated but under curvilinear coordinates and under the presence of a solid body which scatters the pulse. Finally the sound field inducted by the flow of corotating vortex pair is calculated and compared with the corresponding analytical solution.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

Two efficient probe-compensated near-field-far-field transformations with spherical scanning for antennas having two dimensions very different from the third one are here developed. They rely on the nonredundant sampling representations of the electromagnetic fields and on the optimal sampling interpolation expansions, and use effective antenna modellings. In particular, an antenna with a predominant dimension is no longer considered as enclosed in a sphere but in a cylinder ended in two half spheres, whereas a surface formed by two circular “bowls” with the same aperture diameter but different lateral bends is adopted to shape an antenna with two predominant dimensions. These modellings are able to fit very well a lot of antennas by properly setting their geometric parameters. It is so possible to remarkably lower the number of data to be acquired, thus significantly reducing the measurement time. Numerical tests assessing the accuracy and the robustness of the techniques are reported.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Francesco D'Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

This paper deals with the experimental testing of effective probe compensated near-field-far-field (NF-FF) transformations with spherical scanning requiring a minimum number of NF data. They rely on nonredundant sampling representations of the voltage measured by the probe, based on very flexible source modellings suitable for nonvolumetric antennas characterized by two dimensions very different from the other one. In particular, a cylinder ended in two half-spheres is adopted for modelling long antennas, whereas the quasi-planar ones are considered as enclosed in a rotational surface formed by two circular “bowls” having the same aperture diameter, but eventually different bending radii. The NF data needed to perform the classical spherical NF-FF transformation are then accurately and efficiently retrieved from the acquired nonredundant ones via optimal sampling interpolation formulas. A remarkable reduction of the number of the required NF data and, as a consequence, a significant measurement time saving can be so obtained. The experimental tests have been carried out at Antenna Characterization Lab of the University of Salerno and both the NF and FF reconstructions are resulted to be very good, thus confirming the accuracy and reliability of these NF-FF transformations from the experimental viewpoint too.


Sign in / Sign up

Export Citation Format

Share Document