Geometric perspective on the one-dimensional Lenz–Ising model in a non-zero magnetic field

2020 ◽  
Vol 41 (2) ◽  
pp. 025103
Author(s):  
Melchor A Cupatan
2020 ◽  
Vol 75 (2) ◽  
pp. 175-182
Author(s):  
Magdy E. Amin ◽  
Mohamed Moubark ◽  
Yasmin Amin

AbstractThe one-dimensional Ising model with various boundary conditions is considered. Exact expressions for the thermodynamic and magnetic properties of the model using different kinds of boundary conditions [Dirichlet (D), Neumann (N), and a combination of Neumann–Dirichlet (ND)] are presented in the absence (presence) of a magnetic field. The finite-size scaling functions for internal energy, heat capacity, entropy, magnetisation, and magnetic susceptibility are derived and analysed as function of the temperature and the field. We show that the properties of the one-dimensional Ising model is affected by the finite size of the system and the imposed boundary conditions. The thermodynamic limit in which the finite-size functions approach the bulk case is also discussed.


2016 ◽  
Vol 30 (03) ◽  
pp. 1550260 ◽  
Author(s):  
I. Grusha ◽  
M. Menteshashvili ◽  
G. I. Japaridze

We derive an effective spin Hamiltonian for the one-dimensional half-filled asymmetric ionic Hubbard model (IHM) with alternating on-site interaction in the limit of strong repulsion. It is shown that the effective Hamiltonian is that of a spin S = 1/2 anisotropic XXZ Heisenberg chain with alternating next-nearest-neighbor (NNN) and three-spin couplings in the presence of a uniform and a staggered magnetic field.


Sign in / Sign up

Export Citation Format

Share Document