Theoretical and experimental study of motion and sinking time of Saxon Bowls
Abstract This work focuses on investigating the time of sinking of a Saxon bowl proposed by ‘International Young Physicists’ Tournament in 2020. A quasi-static model is built to simulate the motion path of the bowl and predict the sinking time subsequently. The model assumes an open axisymmetric bowl with a hole in its base. The hole is modelled as a pipe for which the flow profile is governed by a modified Bernoulli’s equation which has a Coefficient of Discharge (C_d) added to account for energy losses. The motion of the entire bowl is assumed to be in quasi-static equilibrium for an infinitesimal time interval to calculate the volumetric flow rate through the hole. The model is used to predict the sinking times of various bowls against independent variables - hole radius, bowl dimensions, mass of bowl, mass distribution of bowl, and Coefficient of Discharge - and predict the motion path of bowls of different, axisymmetric geometries. Characterisation of C_d was done by draining a bowl filled with water and measuring the time taken to do so. Experimental verification was completed through measuring sinking times of 3D printed hemispherical bowls of the different variables in water. Motion tracking of bowls with different geometries was done using computational pixel tracking software to verify the model’s predictive power. Data from experiments for sinking time against the variables corroborate with the model to a great degree. The motion path tracked, matched the modelled motion path to a high degree for bowls of different shapes, namely a hemisphere, cylinder, frustum, and a free-form axisymmetric shape. The work is poised for an undergraduate level of readership.