Recovering a potential in damped wave equation from Dirichlet-to-Neumann operator

2021 ◽  
Author(s):  
Alemdar Hasanov ◽  
Vladimir G Romanov
2021 ◽  
Vol 54 (1) ◽  
pp. 245-258
Author(s):  
Younes Bidi ◽  
Abderrahmane Beniani ◽  
Khaled Zennir ◽  
Ahmed Himadan

Abstract We consider strong damped wave equation involving the fractional Laplacian with nonlinear source. The results of global solution under necessary conditions on the critical exponent are established. The existence is proved by using the Galerkin approximations combined with the potential well theory. Moreover, we showed new decay estimates of global solution.


2021 ◽  
Author(s):  
Tim Binz

AbstractWe consider the Dirichlet-to-Neumann operator associated to a strictly elliptic operator on the space $$\mathrm {C}(\partial M)$$ C ( ∂ M ) of continuous functions on the boundary $$\partial M$$ ∂ M of a compact manifold $$\overline{M}$$ M ¯ with boundary. We prove that it generates an analytic semigroup of angle $$\frac{\pi }{2}$$ π 2 , generalizing and improving a result of Escher with a new proof. Combined with the abstract theory of operators with Wentzell boundary conditions developed by Engel and the author, this yields that the corresponding strictly elliptic operator with Wentzell boundary conditions generates a compact and analytic semigroups of angle $$\frac{\pi }{2}$$ π 2 on the space $$\mathrm {C}(\overline{M})$$ C ( M ¯ ) .


2001 ◽  
Vol 80 (3-4) ◽  
pp. 269-277 ◽  
Author(s):  
Salim A. Messaoudi

Sign in / Sign up

Export Citation Format

Share Document