Numerical model and finite element simulation of arterial blood flow profile reconstruction in a uniform magnetic field

2020 ◽  
Vol 53 (19) ◽  
pp. 195402
Author(s):  
Yanjun Liu ◽  
Dan Yang ◽  
Yunhui Duo ◽  
Guoqiang Liu ◽  
Weiduo Wang ◽  
...  
Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1114
Author(s):  
Dan Yang ◽  
Yuchen Wang ◽  
Bin Xu ◽  
Xu Wang ◽  
Yanjun Liu ◽  
...  

Arterial stenosis will reduce the blood flow to various organs or tissues, causing cardiovascular diseases. Although there are mature diagnostic techniques in clinical practice, they are not suitable for early cardiovascular disease prediction and monitoring due to their high cost and complex operation. In this paper, we studied the electromagnetic effect of arterial blood flow and proposed a method based on the deep neural network for arterial blood flow profile reconstruction. The potential difference and weight matrix are used as inputs to the method, and its output is an estimate of the internal blood flow velocity distribution for arterial blood flow profile reconstruction. Firstly, the weight matrix is input into the convolutional auto-encode (CAE) network to extract its features. Then, the weight matrix features and potential difference are combined to obtain the features of the blood velocity distribution. Finally, the velocity features are reconstructed into blood flow velocity distribution by a convolution neural network (CNN). All data sets are obtained from a model of the carotid artery with different rates of stenosis in a uniform magnetic field by COMSOL. The results show that the average root mean square error of the reconstruction results obtained by the proposed method is 0.0333, and the average correlation coefficient is 0.9721, which is better than the corresponding indicators of the Tikhonov, back propagation (BP) and CNN methods. The simulation results show that the proposed method can achieve high accuracy in blood flow profile reconstruction and is of great significance for the early diagnosis of arterial stenosis and other vessel diseases.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4547
Author(s):  
Yanjun Liu ◽  
Guoqiang Liu ◽  
Dan Yang ◽  
Bin Xu

Background and Objectives: Cardiovascular and cerebrovascular diseases caused by arterial stenosis and sclerosis are the main causes of human death. Although there are mature diagnostic techniques in clinical practice, they are not suitable for early disease prediction and monitoring due to their high cost and complex operation. The purpose of this paper is to study the coupling effect of arterial blood flow and linear gradient magnetic field, and to propose a method for the reconstruction of the arterial profile, which will lay a theoretical foundation for new electromagnetic artery scanning imaging technology. Methods and Models: A combination coil composed of gradient coils and drive coils is applied as a magnetic field excitation source. By controlling the excitation current, a linearly gradient magnetic field with a line-shaped zero magnetic field is generated, and the zero magnetic field is driven to scan in a specific direction. According to the magnetoelectric effect of blood flow, under the action of the external magnetic field, the voltage signals on the body surface can be detected by measuring electrodes. The location of the artery center line can be determined by the time–space relationship between voltage signals and zero magnetic field scanning. In addition, based on the reciprocity theorem integral equation, a numerical model between the amplitude of the voltage signal and the arterial radius is derived to reconstruct the arterial radius. The above physical process was simulated in the finite element analysis software COMSOL, and the voltage signals obtained from the simulation verified the arterial profile reconstruction. Results: Through finite element simulation verification, the imaging method based on a linear gradient magnetic field has a numerical accuracy of 90% and a spatial resolution of 1 mm. Moreover, under 100 Hz low-frequency alternating current excitation, the single scanning time is 0.005 s, which is far shorter than the arterial blood flow change cycle, meeting the requirements of real-time imaging. The results demonstrate the effectiveness and high theoretical feasibility of the proposed method in real-time arterial imaging. Conclusions: This study indicates the potential application of linear gradient magnetic fields in arterial profile imaging. Compared with traditional electromagnetic imaging methods, the proposed method has the advantages of fast imaging speed and high resolution, showing the certain application value in early real-time imaging of arterial disease. However, further studies are necessary to confirm its effectiveness in clinical practice by more medical data and real cases.


1986 ◽  
Vol 108 (2) ◽  
pp. 161-167 ◽  
Author(s):  
G. Porenta ◽  
D. F. Young ◽  
T. R. Rogge

A nonlinear mathematical model of arterial blood flow, which can account for tapering, branching, and the presence of stenosed segments, is presented. With the finite-element method, the model equations are transformed into a system of algebraic equations that can be solved on a high-speed digital computer to yield values of pressure and volume rate of flow as functions of time and arterial position. A model of the human femoral artery is used to compare the effects of linear and nonlinear modeling. During periods of rapid alterations in pressure or flow, the nonlinear model shows significantly different results than the linear model. The effect of a stenosis on pressure and flow waveforms is also simulated, and the results indicate that these waveforms are significantly altered by moderate and severe stenoses.


2019 ◽  
Vol 29 (4) ◽  
pp. 612-614
Author(s):  
Anna Kathrin Assmann ◽  
Payam Akhyari ◽  
Florian Demler ◽  
Artur Lichtenberg ◽  
Alexander Assmann

Abstract The impact of different extracorporeal circulation (ECC) scenarios on arterial blood flow profiles has not yet been revealed. To allow for exact measurements, magnetic resonance imaging (MRI) during ECC is required. Therefore, the present study addressed the feasibility of a high-resolution MRI-compatible animal model of ECC. For usage in New Zealand White rabbits, we developed an ECC device, the tubes of which were long enough to eliminate impacts of the magnetic field on the blood pump and heart–lung control machine. The miniaturized ECC system via thoracic access comprised an infant oxygenator, a pulsatile centrifugal pump, 1/8″ tubes, a 10-Fr aortic cannula and a 12-Fr venous cannula for vacuum-assisted drainage. This miniaturized ECC system has very low priming volume (230–255 ml) to reduce the system-inherent haemodilution to 50%. Consequently, haemoglobin rates remained high enough to guarantee adequate oxygenation (arterial pressure of oxygen >200 mmHg). Optimized venous drainage by an additionally inserted pulmonary artery vent catheter resulted in sufficient blood flow (31.6–65.8 ml/min/kg) that was maintained for 60 min with pulsatility. The current study demonstrates the feasibility of MRI-compatible ECC in rabbits, and this model allows for real-time blood flow profile measurements during different ECC scenarios in future projects.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 3006
Author(s):  
Dan Yang ◽  
Yan-jun Liu ◽  
Bin Xu ◽  
Yun-hui Duo

This paper presents a mathematical model of measuring blood flow based on electromagnetic induction for predicting the rate of arterial stenosis. Firstly, an electrode sensor was used to collect the induced potential differences from human skin surface in a uniform magnetic field. Then, the inversion matrix was constructed by the weight function theory and finite element method. Next, the blood flow volume inversion model was constructed by combining the induction potential differences and inversion matrix. Finally, the rate of arterial stenosis was predicted based on mathematical relationship between blood flow and the area of arterial stenosis. To verify the accuracy of the model, a uniform magnetic field distribution of Helmholtz coil and a 3D geometric model of the ulnar artery of the forearm with different rates of stenosis were established in COMSOL, a finite element analysis software. Simulation results showed that the inversion model had high accuracy in the measurement of blood flow and the prediction of rate of stenosis, and is of great significance for the early diagnosis of arterial stenosis and other vessel diseases.


2018 ◽  
Vol 23 (3) ◽  
pp. 767-785 ◽  
Author(s):  
B. Tripathi ◽  
B.K. Sharma

Abstract In this paper, we present the mathematical study of heat and mass transfer effects on an arterial blood flow under the influence of an applied magnetic field with chemical reaction. A case of mild stenosis is considered in a non-tapered artery which is inclined at an angle γ from the axis. The variable viscosity of the blood is considered varying with the hematocrit ratio. Governing non-linear differential equations have been solved by using an analytical scheme, homotopy perturbation method to obtain the solution for the velocity, temperature and concentration profiles of the blood flow. For having an adequate insight to blood flow behavior through a stenosed artery, graphs have been plotted for wall shear stress, velocity, temperature and concentration profiles with varying values of the applied magnetic field, chemical reaction parameter and porosity parameter. The results show that in an inclined artery, the magnitude of the wall shear stress at stenosis throat increases as values of the applied magnetic field increase while it reduces as the values of both the chemical reaction and porosity parameters increase. Contour plots have been plotted to show the variations of the velocity profile of blood flow as the values of the height of the stenosis as well as the influence of the applied magnetic field increase.


Sign in / Sign up

Export Citation Format

Share Document