Oxidized Ti3C2Tx film-based high-performance flexible pressure sensors

Author(s):  
Xiyao Fu ◽  
Depeng Wang ◽  
Lili Wang ◽  
Hao Xu ◽  
Valerii Shulga ◽  
...  
2020 ◽  
Vol 12 (52) ◽  
pp. 58403-58411
Author(s):  
Young-Ryul Kim ◽  
Minsoo P. Kim ◽  
Jonghwa Park ◽  
Youngoh Lee ◽  
Sujoy Kumar Ghosh ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1120 ◽  
Author(s):  
Kangning Liu ◽  
Ziqiang Zhou ◽  
Xingwu Yan ◽  
Xiang Meng ◽  
Hua Tang ◽  
...  

The rational design of high-performance flexible pressure sensors with both high sensitivity and wide linear range attracts great attention because of their potential applications in wearable electronics and human-machine interfaces. Here, polyaniline nanofiber wrapped nonwoven fabric was used as the active material to construct high performance, flexible, all fabric pressure sensors with a bottom interdigitated textile electrode. Due to the unique hierarchical structures, large surface roughness of the polyaniline coated fabric and high conductivity of the interdigitated textile electrodes, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity of 46.48 kPa−1 in a wide linear range (<4.5 kPa), rapid response/relaxation time (7/16 ms) and low detection limit (0.46 Pa). Based on these merits, the practical applications in monitoring human physiological signals and detecting spatial distribution of subtle pressure are demonstrated, showing its potential for health monitoring as wearable electronics.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3465
Author(s):  
Jianli Cui ◽  
Xueli Nan ◽  
Guirong Shao ◽  
Huixia Sun

Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human–machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures. This work is based on the use of a three-dimensional elastic porous carbon nanotubes (CNTs) sponge as the conductive layer to fabricate a novel flexible piezoresistive sensor. The synthesis of a CNTs sponge was achieved by chemical vapor deposition, the basic underlying principle governing the sensing behavior of the CNTs sponge-based pressure sensor and was illustrated by employing in situ scanning electron microscopy. The CNTs sponge-based sensor has a quick response time of ~105 ms, a high sensitivity extending across a broad pressure range (less than 10 kPa for 809 kPa−1) and possesses an outstanding permanence over 4,000 cycles. Furthermore, a 16-pixel wireless sensor system was designed and a series of applications have been demonstrated. Its potential applications in the visualizing pressure distribution and an example of human–machine communication were also demonstrated.


Author(s):  
Shaoyu Niu ◽  
Shan Wang ◽  
qilong yan ◽  
zheyi han ◽  
xiang lou ◽  
...  

High performance flexible pressure sensors with tunable piezoresistivity are proposed with percolative composites as single sensing layer using micro-nickel (μNi) wires as conductive filler and polydimethylsiloxane (PDMS) as matrix. The...


2020 ◽  
Author(s):  
Yunlu Lian ◽  
He Yu ◽  
Mingyuan Wang ◽  
Xiaonan Yang ◽  
Hefei Zhang

Abstract Flexible pressure sensors have attracted increasing attention due to their potential applications in wearable human health monitoring and care systems. Herein, we present a facile approach for fabricating all-textile-based piezoresistive pressure sensor with integrated Ag nanowire-coated fabrics. It fully takes advantage of the synergistic effect of the fiber/yarn/fabric multi-level contacts, leading to the ultrahigh sensitivity of 3.24×10 5 kPa −1 at 0–10 kPa and 2.16×10 4 kPa −1 at 10–100 kPa, respectively. Furthermore, the device achieved a fast response/relaxation time (32/24 ms), and a high stability (>1000 loading/unloading cycles). Thus, such all-textile pressure sensor with high performance is expected to be applicable in the fields of smart cloths, activity monitoring and healthcare device.


2020 ◽  
Author(s):  
Yunlu Lian ◽  
He Yu ◽  
Mingyuan Wang ◽  
Xiaonan Yang ◽  
Hefei Zhang

Abstract Flexible pressure sensors have attracted increasing attention due to their potential applications in wearable human health monitoring and care systems. Herein, we present a facile approach for fabricating all-textile-based piezoresistive pressure sensor with integrated Ag nanowire-coated fabrics. It fully takes advantage of the synergistic effect of the fiber/yarn/fabric multi-level contacts, leading to the ultrahigh sensitivity of 3.24×10 5 kPa −1 at 0–10 kPa and 2.16×10 4 kPa −1 at 10–100 kPa, respectively. Furthermore, the device achieved a fast response/relaxation time (32/24 ms), and a high stability (>1000 loading/unloading cycles). Thus, such all-textile pressure sensor with high performance is expected to be applicable in the fields of smart cloths, activity monitoring and healthcare device.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1968 ◽  
Author(s):  
Sylvie Bilent ◽  
Thi Hong Nhung Dinh ◽  
Emile Martincic ◽  
Pierre-Yves Joubert

This paper reports on the study of microporous polydimethylsiloxane (PDMS) foams as a highly deformable dielectric material used in the composition of flexible capacitive pressure sensors dedicated to wearable use. A fabrication process allowing the porosity of the foams to be adjusted was proposed and the fabricated foams were characterized. Then, elementary capacitive pressure sensors (15 × 15 mm2 square shaped electrodes) were elaborated with fabricated foams (5 mm or 10 mm thick) and were electromechanically characterized. Since the sensor responses under load are strongly non-linear, a behavioral non-linear model (first order exponential) was proposed, adjusted to the experimental data, and used to objectively estimate the sensor performances in terms of sensitivity and measurement range. The main conclusions of this study are that the porosity of the PDMS foams can be adjusted through the sugar:PDMS volume ratio and the size of sugar crystals used to fabricate the foams. Additionally, the porosity of the foams significantly modified the sensor performances. Indeed, compared to bulk PDMS sensors of the same size, the sensitivity of porous PDMS sensors could be multiplied by a factor up to 100 (the sensitivity is 0.14 %.kPa−1 for a bulk PDMS sensor and up to 13.7 %.kPa−1 for a porous PDMS sensor of the same dimensions), while the measurement range was reduced from a factor of 2 to 3 (from 594 kPa for a bulk PDMS sensor down to between 255 and 177 kPa for a PDMS foam sensor of the same dimensions, according to the porosity). This study opens the way to the design and fabrication of wearable flexible pressure sensors with adjustable performances through the control of the porosity of the fabricated PDMS foams.


Sign in / Sign up

Export Citation Format

Share Document