Performance enhancement of armchair graphene nanoribbon resonant tunneling diode using V-shaped potential well

2021 ◽  
Author(s):  
Madhusudan Mishra ◽  
N R Das ◽  
Narayan Sahoo ◽  
Trinath Sahu

Abstract We study the electron transport in armchair graphene nanoribbon (AGNR) resonant tunneling diode (RTD) using square and V-shaped potential well profiles. We use non-equilibrium Green’s function formalism to analyze the transmission and I-V characteristics. Results show that an enhancement in the peak current (Ip ) can be obtained by reducing the well width (Ww ) or barrier width (Wb ). As Ww decreases, Ip shifts to a higher peak voltage (Vp ), while there is almost no change in Vp with decreasing Wb . It is gratifying to note that there is an enhancement in Ip by about 1.6 times for a V-shaped well over a square well. Furthermore, in the case of a V-shaped well, the negative differential resistance occurs in a shorter voltage range, which may beneficial for ultra-fast switching and high-frequency signal generation. Our work anticipates the suitability of graphene, having better design flexibility, to develop ideally 2D RTDs for use in ultra-dense nano-electronic circuits and systems.

2020 ◽  
Vol 11 ◽  
pp. 688-694 ◽  
Author(s):  
Majid Sanaeepur

A nanometer-scaled resonant tunneling diode based on lateral heterojunctions of armchair graphene and boron nitride nanoribbons, exhibiting negative differential resistance is proposed. Low-bandgap armchair graphene nanoribbons and high-bandgap armchair boron nitride nanoribbons are used to design the well and the barrier region, respectively. The effect of all possible substitutional defects (including BC, NC, CB, and CN) at the interface of graphene and boron nitride nanoribbons on the negative differential resistance behavior of the proposed resonant tunneling diode is investigated. Transport simulations are carried out in the framework of tight-binding Hamiltonians and non-equilibrium Green’s functions. The results show that a single substitutional defect at the interface of armchair graphene and boron nitride nanoribbons can dramatically affect the negative differential resistance behavior depending on its type and location in the structure.


2012 ◽  
Vol E95.C (5) ◽  
pp. 871-878
Author(s):  
Masanari FUJITA ◽  
Mitsufumi SAITO ◽  
Michihiko SUHARA

Sign in / Sign up

Export Citation Format

Share Document