Theoretical and Experimental Study of the Phase Optimization of Tapping Mode Atomic Force Microscope

2022 ◽  
Author(s):  
Zheng Wei ◽  
Anjie Peng ◽  
Fengjiao Bin ◽  
Yaxin Chen ◽  
Rui Guan

Abstract Phase image in tapping mode atomic force microscope (TM-AFM) results from various dissipation in microcantilever system. The phases mainly reflected the tip-sample contact dissipations which allowed the nanoscale characteristics to be distinguished. In this research investigation, two factors affecting the phase and phase contrast were analyzed. It was concluded from the theoretical and experimental results that the phases and phase contrasts in the TM-AFM were related to the excitation frequencies and energy dissipation of the system. For a two-component blend, it was theoretically and experimentally proven that there was an optimal excitation frequency for maximizing the phase contrast. Therefore, selecting the optimal excitation frequency could potentially improve the phase contrast results. In addition, only the key dissipation between the tip and sample was found to accurately reflect the sample properties. Meanwhile, the background dissipation could potentially reduce the contrasts of the phase images and even mask or distort the effective information in the phase images. In order to address the aforementioned issues, a self-excited method was adopted in this study in order to eliminate the influencing effects of the background dissipation on the phases. Subsequently, the real phase information of the samples was successfully obtained. It was considered in this study that eliminating the background dissipation had effectively improved the phase contrast results and the real phase information of the samples was accurately reflected. These results are of great significance to optimize the phase of two-component samples and multi-component samples in atomic force microscope.

2019 ◽  
Vol 86 (s1) ◽  
pp. 12-16
Author(s):  
Janik Schaude ◽  
Julius Albrecht ◽  
Ute Klöpzig ◽  
Andreas C. Gröschl ◽  
Tino Hausotte

AbstractThis article presents a new tilting atomic force microscope (AFM) with an adjustable probe direction and piezoresistive cantilever operated in tapping-mode. The AFM is based on two rotational axes, which enable the adjustment of the probe direction to cover a complete hemisphere. The whole setup is integrated into a nano measuring machine (NMM-1) and the metrological traceability of the piezoresistive cantilever is warranted by in situ calibration on the NMM-1. To demonstrate the capabilities of the tilting AFM, measurements were conducted on a step height standard.


1999 ◽  
Vol 5 (S2) ◽  
pp. 962-963
Author(s):  
M. VanLandingham ◽  
X. Gu ◽  
D. Raghavan ◽  
T. Nguyen

Recent advances have been made on two fronts regarding the capability of the atomic force microscope (AFM) to characterize the mechanical response of polymers. Phase imaging with the AFM has emerged as a powerful technique, providing contrast enhancement of topographic features in some cases and, in other cases, revealing heterogeneities in the polymer microstructure that are not apparent from the topographic image. The enhanced contrast provided by phase images often allows for identification of different material constituents. However, while the phase changes of the oscillating probe are associated with energy dissipation between the probe tip and the sample surface, the relationship between this energy dissipation and the sample properties is not well understood.As the popularity of phase imaging has grown, the capability of the AFM to measure nanoscale indentation response of polymers has also been explored. Both techniques are ideal for the evaluation of multi-phase and multi-component polymer systems.


2013 ◽  
Vol 378 ◽  
pp. 466-471
Author(s):  
Po Jen Shih ◽  
Shang Hao Cai

The dynamic behaviors of carbon nanotube probes applied in Atomic Force Microscope measurement are of interest in advanced nanoscalar topography. In this paper, we developed the characteristic equations and applied the model analysis to solve the eigenvalues of the microcantilever and the carbon nanotube. The eigenvalues were then used in the tapping mode system to predict the frequency responses against the tip-sample separations. It was found that the frequency drop steeply if the separation was less than certain distances. This instability of frequency is deduced from the jump of microcantilever or the jump of the carbon nanotube. Various lengths and binding angles of the carbon nanotube were considered, and the results indicated that the binding angle dominated the frequency responses and jumps.


2008 ◽  
Vol 74 (742) ◽  
pp. 1409-1415
Author(s):  
Masatoshi NUMATSU ◽  
Andrew J. DICK ◽  
Hiroshi YABUNO ◽  
Masaharu KURODA ◽  
Balakumar BALACHANDRAN

2009 ◽  
Vol 106 (33) ◽  
pp. 13655-13660 ◽  
Author(s):  
J. Melcher ◽  
C. Carrasco ◽  
X. Xu ◽  
J. L. Carrascosa ◽  
J. Gomez-Herrero ◽  
...  

2014 ◽  
Vol 25 (6) ◽  
pp. 732-740 ◽  
Author(s):  
Kleber dos Santos Rodrigues ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset ◽  
Bento Rodrigues de Pontes ◽  
Átila Madureira Bueno

Author(s):  
Kleber dos Santos Rodrigues ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset ◽  
Bento Rodrigues de Pontes Junior

2006 ◽  
Vol 73 (15) ◽  
Author(s):  
János Kokavecz ◽  
Othmar Marti ◽  
Péter Heszler ◽  
Ádám Mechler

Sign in / Sign up

Export Citation Format

Share Document