scholarly journals Structure and Simulation of Roadway Disaster Simulation Control System for High Temperature Smoke Drill

2019 ◽  
Vol 1187 (3) ◽  
pp. 032007
Author(s):  
Guo Jikun ◽  
Zhang Rui
Author(s):  
Shaojie Luo ◽  
Lei Shi ◽  
Shutang Zhu

In order to provide a convenient tool for engineering designed, safety analysis, operator training and control system design of the high temperature gas-cooled test reactor (HTR), an integrated system for simulation, control and online assistance of the HTR-10 has been designed and is still under development by the Institute of Nuclear Energy Technology (INET) of Tsinghua University in China. The whole system is based on a network environment and includes three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four parts: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate each other via network. The SIMUSUB is intended to analyze and calculate the physical processes of the reactor core, the main loop system and the stream generator, etc., as well as to simulate the normal operation and transient accidents, and the result data can be graphically displayed through the RGDC dynamically. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameter, which are difficult to measure. This whole system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online supports for operators in the main control room, or as a convenient powerful tool for the control system design.


Author(s):  
Kuniyoshi Takamatsu ◽  
Kazuhiro Sawa

The High-Temperature Engineering Test Reactor (HTTR) is the first High-Temperature Gas-cooled Reactor (HTGR) with a thermal power of 30 MW and a maximum reactor outlet coolant temperature of 950 °C; it was built at the Oarai Research and Development Center of JAEA. At present, test studies are being conducted using the HTTR to improve HTGR technologies in collaboration with domestic industries that also contribute to foreign projects for the acceleration of HTGR development worldwide. To improve HTGR technologies, advanced analysis techniques are currently under development using data obtained with the HTTR, which include reactor kinetics, thermal hydraulics, safety evaluation, and fuel performance evaluation data (including the behavior of fission products). In this study, a three gas circulator trip test and a vessel cooling system (VCS) stop test were performed as a loss of forced cooling (LOFC) test to demonstrate the inherent safety features of HTGR. The VCS stop test involved stopping the VCS located outside the reactor pressure vessel to remove the residual heat of the reactor core as soon as the three gas circulators are tripped. All three gas circulators were tripped at 9, 24 and 30 MW. The primary coolant flow rate was reduced from the rated 45 t/h to 0 t/h. Control rods (CRs) were not inserted into the core and the reactor power control system was not operational. In fact, the three gas circulator tripping test at 9 MW has already been performed in a previous study. However, the results cannot be disclosed to the public because of a confidentiality agreement. Therefore, we cannot refer to the difference between the analytical and test results. We determined that the reactor power immediately decreases to the decay heat level owing to the negative reactivity feedback effect of the core, although the reactor shutdown system was not operational. Moreover, the temperature distribution in the core changes slowly because of the high heat capacity due to the large amount of core graphite. Core dynamics analysis of the LOFC test for the HTTR was performed. The relationship among the reactivities (namely, Doppler, moderator temperature, and xenon reactivities) affecting recriticality time and reactor peak power level as well as total reactivity was addressed. Furthermore, the analytical results for a reactor transient of hundred hours are presented. Based on the results, emergency operating procedures can be developed for the case of a loss of coolant accident in HTGR when the CRs are not inserted into the core and the reactor power control system is not operational. The analytical results will be used in the design and construction of the Kazakhstan High-Temperature Reactor and the realization of commercial Very High-Temperature Reactor systems.


Author(s):  
Zhe Dong ◽  
Xiaojin Huang ◽  
Liangju Zhang

The modular high-temperature gas-cooled nuclear reactor (MHTGR) is seen as one of the best candidates for the next generation of nuclear power plants. China began to research the MHTGR technology at the end of the 1970s, and a 10 MWth pebble-bed high temperature reactor HTR-10 has been built. On the basis of the design and operation of the HTR-10, the high temperature gas-cooled reactor pebble-bed module (HTR-PM) project is proposed. One of the main differences between the HTR-PM and HTR-10 is that the ratio of height to diameter corresponding to the core of the HTR-PM is much larger than that of the HTR-10. Therefore it is not proper to use the point kinetics based model for control system design and verification. Motivated by this, a nodal neutron kinetics model for the HTR-PM is derived, and the corresponding nodal thermal-hydraulic model is also established. This newly developed nodal model can reflect not only the total or average information but also the distribution information such as the power distribution as well. Numerical simulation results show that the static precision of the new core model is satisfactory, and the trend of the transient responses is consistent with physical rules.


Sign in / Sign up

Export Citation Format

Share Document