scholarly journals Building thermal bridge heat losses quantification by infrared thermography. Steady-state evaluation and uncertainty calculation

2019 ◽  
Vol 1343 ◽  
pp. 012171
Author(s):  
A François ◽  
L Ibos ◽  
V Feuillet ◽  
J Meulemans
1999 ◽  
Vol 60 (3) ◽  
pp. 213-229 ◽  
Author(s):  
V Fierro ◽  
J.L Miranda ◽  
C Romero ◽  
J.M Andrés ◽  
A Pierrot ◽  
...  

1973 ◽  
Vol 6 (2) ◽  
pp. 91-109 ◽  
Author(s):  
E.C. Bell ◽  
L.N. Hulley ◽  
N.C. Mazumder

2003 ◽  
Vol 13 ◽  
pp. S221-S222
Author(s):  
Y.W.F. Lam ◽  
L. Ereshefsky ◽  
A. Port ◽  
C.J. Timmer ◽  
P. Dogterom

Author(s):  
Eunho Kang ◽  
Hyomoon Lee ◽  
Dongsu Kim ◽  
Jongho Yoon

Abstract Practical thermal bridge performance indicators (ITBs) of existing buildings may differ from calculated thermal bridge performance derived theoretically due to actual construction conditions, such as effect of irregular shapes and aging. To fill this gap in a practical manner, more realistic quantitative evaluation of thermal bridge at on-site needs to be considered to identify thermal behaviors throughout exterior walls and thus improve overall insulation performance of buildings. In this paper, the model of a thermal bridge performance indicator is developed based on an in-situ Infrared thermography method, and a case study is then carried out to evaluate thermal performance of an existing exterior wall using the developed model. For the estimation method in this study, the form of the likelihood function is used with the Bayesian method to constantly reflect the measured data. Subsequently, the coefficient of variation is applied to analyze required times for the assumed convergence. Results from the measurement for three days show that thermal bridge under the measurement has more heat losses, including 1.14 times, when compared to the non-thermal bridge. In addition, the results present that it takes about 40 hours to reach 1% of the variation coefficient. Comparison of the ITB estimated at coefficient of variation 1% (40 hours point) with the ITB estimated at end-of-experiment (72 hours point) results in 0.9% of a relative error.


The action of the katharometer as an instrument for gas analysis depends essentially upon the thermal conductivity of the gas mixture examined. One method of calibration for a given pair of gases is to make a number of mixtures of known composition by volume, and to obtain from them a curve showing how the deflection θ of the galvanometer in the bridge circuit of the instrument depends upon the composition of the mixture which surrounds one of the fine platinum helices. By reference to this curve, any other mixture of the two gases can be analysed when its deflection is known. A typical calibration curve is shown in fig. 1, which is for mixtures of helium and argon. The direction of the galvanometer deflection depends on whether the gas is a better or worse conductor than air. A useful convention is to regard the deflection for gases which are better conductors than air as positive. Daynes has examined the nature of the heat losses in the katharometer cell, which are due to ( a ) radiation, ( b ) convection, ( c ) conduction by the gas, ( d ) cooling of the platinum helix by metallic conduction along the copper lead. Even at the highest temperature used in the katharometer, the effect of ( a ) is very small, and will not be influenced directly by the nature of the gas surrounding the wire. Experiments have shown that the effect of ( b ) is also small. The effect of ( c ) on the temperature of the helix is large, and will depend upon the nature of the gas. The effect of ( d ) is also considerable, and will depend upon the temperature of the helix. This effect will consequently vary with the nature of the gas under examination, but the magnitude of the effect in the steady state which is reached depends upon the effect of ( c ) (the small effects of convection and radiation will similarly depend upon the effect of ( c )). Thus in practice, the thermal conductivity of the gas controls the temperature of the helix, and the instrument will give the same reading for all gases or mixtures having the same thermal conductivity. Owing to the complicated design of the katharometer cell, it is not possible to make a simple calculation of the heat loss due solely to the conductivity of the gas, or to devise a method of converting katharometer readings directly into thermal conductivities. It should be noticed also that the calibration curves for different instruments are not all of quite the same form, owing to small differences in the winding of the helix, or of its position in the cell.


Sign in / Sign up

Export Citation Format

Share Document