scholarly journals Estimation of the flows mixing efficiency inside T-micromixer with an external perturbation for low Reynolds numbers

2019 ◽  
Vol 1382 ◽  
pp. 012159
Author(s):  
A Yu Kravtsova ◽  
P E Ianko ◽  
M V Kashkarova ◽  
A V Bilsky
Author(s):  
Yan Feng Fan ◽  
Ibrahim Hassan

In this paper, a passive interdigital micromixer with the circular-sector obstacles is proposed and the mixing performance is estimated by numerical simulation. The tested Reynolds numbers range from 0.01 to 10. Flow recirculation or vortices seems impossible to generate to enhance the mixing at such low Reynolds numbers. Hence, molecular diffusion is the dominant mixing mechanism. Based on the diffusion principle, enlarging the mixing length, reducing the diffusion length and increasing the surface area between species are major methods to obtain mixing enhancement. In order to achieve rapid mixing, shortening the mixing length is necessary. However, the reduced mixing length induces the decreased mixing time which the species take to mix. The circular-section obstacles are placed in the straight microchannels to enlarge the contact surface area between species. The flow path is distorted after passing the obstacles so that the real mixing length increases compared with traditional T-shape micromixers. Furthermore, flow advection takes a part role in mixing since the velocity direction is no longer perpendicular to diffusion direction. Different geometries and layouts of obstacles are analyzed for optimization. The results of optimal design show the worst mixing efficiency, around 50%, occurs at Re = 1. In order to improve the lower limitation of mixing efficiency, the duplicated layouts of obstacles in lateral direction with interdigital inlet are applied to reduce the diffusion path and increase the interface area so that the mixing efficiency could be enhanced. The results show that the mixing efficiency could achieve 85% at Re ≤ 1 with a low pressure drop of 100 Pa. It has the potential to be used in applications with low Reynolds numbers.


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2004 ◽  
Author(s):  
Andrew D. Ketsdever ◽  
Michael T. Clabough ◽  
Sergey F. Gimelshein ◽  
Alina Alexeenko

2020 ◽  
Vol 32 (11) ◽  
pp. 119901
Author(s):  
Cathal Cummins ◽  
Ignazio Maria Viola ◽  
Enrico Mastropaolo ◽  
Naomi Nakayama

2021 ◽  
Vol 33 (5) ◽  
pp. 053602
Author(s):  
Shubiao Wang ◽  
Wenming Cheng ◽  
Run Du ◽  
Yupu Wang ◽  
Qingrong Chen

Sign in / Sign up

Export Citation Format

Share Document