scholarly journals Nonlocal beam model and FEM of free vibration for pristine and defective CNTs

2020 ◽  
Vol 1603 ◽  
pp. 012010
Author(s):  
M Chwał
2021 ◽  
Vol 11 (21) ◽  
pp. 10485
Author(s):  
Hao Yu ◽  
Feng Liang ◽  
Yu Qian ◽  
Jun-Jie Gong ◽  
Yao Chen ◽  
...  

Phononic crystals (PCs) are a novel class of artificial periodic structure, and their band gap (BG) attributes provide a new technical approach for vibration reduction in piping systems. In this paper, the vibration suppression performance and natural properties of fluid-conveying pipes with periodically varying cross-section are investigated. The flexural wave equation of substructure pipes is established based on the classical beam model and traveling wave property. The spectral element method (SEM) is developed for semi-analytical solutions, the accuracy of which is confirmed by comparison with the available literature and the widely used transfer matrix method (TMM). The BG distribution and frequency response of the periodic pipe are attained, and the natural frequencies and mode shapes are also obtained. The effects of some critical parameters are discussed. It is revealed that the BG of the present pipe system is fundamentally induced by the geometrical difference of the substructure cross-section, and it is also related to the substructure length and fluid–structure interaction (FSI). The number of cells does not contribute to the BG region, while it has significant effects on the amplitude attenuation, higher order natural frequencies and mode shapes. The impact of FSI is more evident for the pipes with smaller numbers of cells. Moreover, compared with the conventional TMM, the present SEM is demonstrated more effective for comprehensive analysis of BG characteristics and free vibration of PC dynamical structures.


2011 ◽  
Vol 110-116 ◽  
pp. 4532-4536 ◽  
Author(s):  
K. Torabi ◽  
J. Nafar Dastgerdi ◽  
S. Marzban

In this paper, free vibration differential equations of cracked beam are solved by using differential transform method (DTM) that is one of the numerical methods for ordinary and partial differential equations. The Euler–Bernoulli beam model is proposed to study the frequency factors for bending vibration of cracked beam with ant symmetric boundary conditions (as one end is clamped and the other is simply supported). The beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in both vertical displacement and rotational due to bending. The differential equations for the free bending vibrations are established and then solved individually for each segment with the corresponding boundary conditions and the appropriated compatibility conditions at the cracked section by using DTM and analytical solution. The results show that DTM provides simple method for solving equations and the results obtained by DTM converge to the analytical solution with much more accurate for both shallow and deep cracks. This study demonstrates that the differential transform is a feasible tool for obtaining the analytical form solution of free vibration differential equation of cracked beam with simple expression.


Author(s):  
M Faraji Oskouie ◽  
R Ansari ◽  
H Rouhi

On the basis of fractional viscoelasticity, the size-dependent free-vibration response of viscoelastic carbon nanotubes conveying fluid and resting on viscoelastic foundation is studied in this article. To this end, a nonlocal Timoshenko beam model is developed in the context of fractional calculus. Hamilton’s principle is applied in order to obtain the fractional governing equations including nanoscale effects. The Kelvin–Voigt viscoelastic model is also used for the constitutive equations. The free-vibration problem is solved using two methods. In the first method, which is limited to the simply supported boundary conditions, the Galerkin technique is employed for discretizing the spatial variables and reducing the governing equations to a set of ordinary differential equations on the time domain. Then, the Duffing-type time-dependent equations including fractional derivatives are solved via fractional integrator transfer functions. In the second method, which can be utilized for carbon nanotubes with different types of boundary conditions, the generalized differential quadrature technique is used for discretizing the governing equations on spatial grids, whereas the finite difference technique is used on the time domain. In the results, the influences of nonlocality, geometrical parameters, fractional derivative orders, viscoelastic foundation, and fluid flow velocity on the time responses of carbon nanotubes are analyzed.


2019 ◽  
Vol 19 (07) ◽  
pp. 1950072 ◽  
Author(s):  
S. K. Lai ◽  
X. Yang ◽  
C. Wang ◽  
W. J. Liu

This work aims to construct accurate and simple lower-order analytical approximation solutions for the free and forced vibration of electrostatically actuated micro-electro-mechanical system (MEMS) resonators, in which geometrical and material nonlinearities are induced by the mid-plane stretching, dynamic pull-in characteristics, electrostatic forces and other intrinsic properties. Due to the complexity of nonlinear MEMS systems, the quest of exact closed-form solutions for these problems is hardly obtained for system design and analysis, in particular for harmonically forced nonlinear systems. To examine the simplicity and effectiveness of the present analytical solutions, two illustrative cases are taken into consideration. First, the free vibration of a doubly clamped microbeam suspended on an electrode due to a suddenly applied DC voltage is considered. Based on the Euler–Bernoulli beam theory and the von Karman type nonlinear kinematics, the dynamic motion of the microbeam is further discretized by the Galerkin method to an autonomous system with general nonlinearity, which can be solved analytically by using the Newton harmonic balance method. In addition to large-amplitude free vibration, the primary resonance response of a doubly clamped microbeam driven by two symmetric electrodes is also investigated, in which the microbeam is actuated by a bias DC voltage and a harmonic AC voltage. Following the same decomposition approach, the governing equation of a harmonically forced beam model can be transformed to a nonautonomous system with odd nonlinearity only. Then, lower-order analytical approximation solutions are derived to analyze the steady-state resonance response of such a problem under a combination of various DC and AC voltage effects. Finally, the analytical approximation results of both cases are validated, and they are in good agreement with those obtained by the standard Runge–Kutta method.


2012 ◽  
Vol 629 ◽  
pp. 296-301
Author(s):  
Hong Liang Tian

Some exact concise analytic solutions of critical axial compressed buckling load for carbon nanotubes are derived via nonlocal beam. Scale coefficient, length, mode and radius effect on nonlocal critical axial compressed buckling load of CNTs is established and can be analyzed in terms of the general solutions. Radius effect on nonlocal critical axial compressed buckling load is only found through nonlocal elastic shell model but not derived via nonlocal elastic beam model. Numerical calculations of CNTs show that local critical axial compressed buckling load through local elastic theory is overestimated. Scale coefficient, length, mode and radius effect should be taken into account in predicting more accurate results for mechanical behaviors of CNTs via continuum model.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050007 ◽  
Author(s):  
Atteshamuddin S. Sayyad ◽  
Yuwaraj M. Ghugal

In this study, a theoretical unification of twenty-one nonlocal beam theories are presented by using a unified nonlocal beam theory. The small-scale effect is considered based on the nonlocal differential constitutive relations of Eringen. The present unified theory satisfies traction free boundary conditions at the top and bottom surface of the nanobeam and hence avoids the need of shearing correction factor. Hamilton’s principle is employed to derive the equations of motion. The present unified nonlocal formulation is applied for the bending, buckling and free vibration analysis of functionally graded (FG) nanobeams. The elastic properties of FG material vary continuously by gradually changing the volume fraction of the constituent materials in the thickness direction. Closed-form analytical solutions are obtained by using Navier’s solution technique. Non-dimensional displacements, stresses, natural frequencies and critical buckling loads for FG nanobeams are presented. The numerical results presented in this study can be served as a benchmark for future research.


Sign in / Sign up

Export Citation Format

Share Document