scholarly journals The inverse design and optimization for composite materials with random uncertainty

2021 ◽  
Vol 1777 (1) ◽  
pp. 012051
Author(s):  
S F Song ◽  
Z Q Wang ◽  
Y L Cheng
1988 ◽  
Vol 41 (6) ◽  
pp. 270-277 ◽  
Author(s):  
George S. Dulikravich

A summary of recent research in the field of inverse design and optimization of coolant flow passages in the internally cooled configurations is presented. The methodology allows design engineers to prescribe desired surface temperature and heat flux distributions and to fix portions of the multiply connected realistically shaped configurations. The shapes of the resulting coolant flow passages can be arbitrarily or circularly shaped with a capability to maintain certain manufacturing geometric constraints. Unsteady cooling of organs and tissues in bioengineering is demonstrated by determining optimal time variation of thermal boundary conditions on the walls of the cooling container while maintaining the geometry and size of the configuration. Another concept suggests that components subjected to strong unsteady cooling or heating can be optimized for the desired time dependent overspecified surface thermal conditions by determining the corresponding instantaneous temperatures of the coolant flow passages. This effect can be achieved by applying optimal control of distributed coolant flow rates in each flow passage.


2004 ◽  
Vol 126 (5) ◽  
pp. 799-806 ◽  
Author(s):  
A´rpa´d Veress ◽  
Rene´ Van den Braembussche

The design and optimization of a multistage radial compressor vaneless diffuser, cross-over and return channel is presented. An analytical design procedure for 3D blades with prescribed load distribution is first described and illustrated by the design of a 3D return channel vane with leading edge upstream of the cross-over. The analysis by means of a 3D Navier–Stokes solver shows a substantial improvement of the return channel performance in comparison with a classical 2D channel. Most of the flow separation inside and downstream of the cross-over could be avoided in this new design. The geometry is further improved by means of a 3D inverse design method to smooth the Mach number distribution along the vanes at hub and shroud. The Navier–Stokes analysis shows a rather modest impact on performance but the calculated velocity distribution indicates a more uniform flow and hence a larger operating range can be expected. The impact of vane lean on secondary flows is investigated and further performance improvements have been obtained with negative lean.


Author(s):  
Duccio Bonaiuti ◽  
Mehrdad Zangeneh

Optimization strategies have been used in recent years for the aerodynamic and mechanical design of turbomachine components. One crucial aspect in the use of such methodologies is the choice of the geometrical parameterization, which determines the complexity of the objective function to be optimized. In the present paper, an optimization strategy for the aerodynamic design of turbomachines is presented, where the blade parameterization is based on the use of a three-dimensional inverse design method. The blade geometry is described by means of aerodynamic parameters, like the blade loading, which are closely related to the aerodynamic performance to be optimized, thus leading to a simple shape of the optimization function. On the basis of this consideration, it is possible to use simple approximation functions for describing the correlations between the input design parameters and the performance ones. The Response Surface Methodology coupled with the Design of Experiments (DOE) technique was used for this purpose. CFD analyses were run to evaluate the configurations required by the DOE to generate the database. Optimization algorithms were then applied to the approximated functions in order to determine the optimal configuration or the set of optimal ones (Pareto front). The method was applied for the aerodynamic redesign of two different turbomachine components: a centrifugal compressor stage and a single-stage axial compressor. In both cases, both design and off-design operating conditions were analyzed and optimized.


Sign in / Sign up

Export Citation Format

Share Document