scholarly journals CdTe Thin Films prepared by thermal evaporation on Silicon substrate for photocurrent device Applications

2021 ◽  
Vol 1963 (1) ◽  
pp. 012137
Author(s):  
Ali Hameed Rasheed ◽  
Lamyaa Mohammed Raoof ◽  
Ahmed N. abd
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ala J. Al-Douri ◽  
F. Y. Al-Shakily ◽  
Abdalla A. Alnajjar ◽  
Maysoon F. A. Alias

Films of CdTe pure and doped with various atomic percentages of Al and Sb (0.5, 1.5 & 2.5) were prepared, and their electrical properties were investigated. The films were prepared by thermal evaporation on glass substrates at two substrate temperatures (Ts=RT& 423 K). The results showed that the conduction phenomena of all the investigated CdTe thin films on glass substrates are caused by two distinct mechanisms. Room temperature DC conductivity increases by a factor of four for undoped CdTe thin films asTsincreases and by 1-2 orders of magnitude with increasing dopant percentage of Al and Sb. In general, films doped with Sb are more efficient than Al-doped films. The activation energy (Ea2) decreases with increasingTsand dopant percentage for both Al and Sb. Undoped CdTe films deposited at RT are p-type convert to n-type with increasingTsand upon doping with Al at more than 0.5%. The carrier concentration decreases asTsincreases while it increases with increasing dopant percentage. Hall mobility decreases more than three times as Al increases whereas it increases about one order of magnitude with increasing Sb percentage in CdTe thin films deposited at 423 K and RT, respectively.


MRS Advances ◽  
2018 ◽  
Vol 3 (42-43) ◽  
pp. 2627-2642 ◽  
Author(s):  
Lawrence K. Dintle ◽  
Pearson V.C. Luhanga ◽  
Charles Moditswe ◽  
Cosmas M. Muiva

ABSTRACTWe report on the formation of gamma phase cuprous iodide (CuI) thin films of various film thickness with high (111) orientation deposited by vacuum thermal evaporation of powders attained through a cost-saving extraction method. The study investigated the dependence of structural and optoelectronic properties of the thin films on film thickness. Structural characterisation of the films revealed an increase in crystallite size and a decrease in dislocation density with film thickness which indicated an improvement in the crystallographic microstructure. There was a strong orientation towards (111) growth. The Scanning Electron Microscope images of the CuI thin films showed a compact morphology with an increase in larger grains as film thickness increased. The thin films showed a mean optical transmittance of around 70 % in the visible region with a decreasing trend as thickness increased. There was an observed red shift of the transmittance spectra with film thickness. All thin films also showed good electrical conductivity. However, the figure of merit improved with decreasing thickness. The good optical transmittance and relatively low resistivity qualify the CuI thin films as candidates for electro-optical device applications.


2008 ◽  
Vol 5 (3) ◽  
pp. 449-453
Author(s):  
Baghdad Science Journal

The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


2015 ◽  
Vol 7 (3) ◽  
pp. 1923-1930
Author(s):  
Austine Amukayia Mulama ◽  
Julius Mwakondo Mwabora ◽  
Andrew Odhiambo Oduor ◽  
Cosmas Mulwa Muiva ◽  
Boniface Muthoka ◽  
...  

 Selenium-based chalcogenides are useful in telecommunication devices like infrared optics and threshold switching devices. The investigated system of Ge5Se95-xZnx (0.0 ≤ x ≤ 4 at.%) has been prepared from high purity constituent elements. Thin films from the bulk material were deposited by vacuum thermal evaporation. Optical absorbance measurements have been performed on the as-deposited thin films using transmission spectra. The allowed optical transition was found to be indirect and the corresponding band gap energy determined. The variation of optical band gap energy with the average coordination number has also been investigated based on the chemical bonding between the constituents and the rigidity behaviour of the system’s network.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


Sign in / Sign up

Export Citation Format

Share Document