Measurements of pitch-off diameter of gas bubbles in liquid metal
Abstract To determine the separation diameter of bubbles in a liquid metal melt, an original technique based on the conductivity method is proposed. A thin electrode is installed in the center of the outflow channel, and the separation of bubbles is determined by closing and opening the electrical circuit. In this way, the separation frequency of the bubbles and their volume can be determined. Additional studies are carried out on a transparent liquid (water). It is shown that the presence of an electrode has little effect on the process of bubble detachment. The processing data of high-speed video filming and the proposed method in a transparent liquid coincide with high accuracy. Measurements of the frequency of bubble detachment in melts of the Rose and lead alloy are carried out. The results obtained are used to tune two-phase flow models when simulating fast neutron reactors with heavy liquid metal coolants.